Automatic Generation of Aerial Orthoimages Using Sentinel-2 Satellite Imagery with a Context-Based Deep Learning Approach

被引:5
|
作者
Yoo, Suhong [1 ]
Lee, Jisang [1 ]
Bae, Junsu [1 ]
Jang, Hyoseon [1 ]
Sohn, Hong-Gyoo [1 ]
机构
[1] Yonsei Univ, Sch Civil & Environm Engn, Seoul 03722, South Korea
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 03期
关键词
aerial orthoimage; Sentinel-2; super-resolution; image simulation; residual U-Net; SUPERRESOLUTION;
D O I
10.3390/app11031089
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Aerial images are an outstanding option for observing terrain with their high-resolution (HR) capability. The high operational cost of aerial images makes it difficult to acquire periodic observation of the region of interest. Satellite imagery is an alternative for the problem, but low-resolution is an obstacle. In this study, we proposed a context-based approach to simulate the 10 m resolution of Sentinel-2 imagery to produce 2.5 and 5.0 m prediction images using the aerial orthoimage acquired over the same period. The proposed model was compared with an enhanced deep super-resolution network (EDSR), which has excellent performance among the existing super-resolution (SR) deep learning algorithms, using the peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and root-mean-squared error (RMSE). Our context-based ResU-Net outperformed the EDSR in all three metrics. The inclusion of the 60 m resolution of Sentinel-2 imagery performs better through fine-tuning. When 60 m images were included, RMSE decreased, and PSNR and SSIM increased. The result also validated that the denser the neural network, the higher the quality. Moreover, the accuracy is much higher when both denser feature dimensions and the 60 m images were used.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 50 条
  • [1] A deep learning approach for automatic mapping of poplar plantations using Sentinel-2 imagery
    D'Amico, G.
    Francini, S.
    Giannetti, F.
    Vangi, E.
    Travaglini, D.
    Chianucci, F.
    Mattioli, W.
    Grotti, M.
    Puletti, N.
    Corona, P.
    Chirici, G.
    GISCIENCE & REMOTE SENSING, 2021, 58 (08) : 1352 - 1368
  • [2] Classification of protected grassland habitats using deep learning architectures on Sentinel-2 satellite imagery data
    Diaz-Ireland, Gabriel
    Gulcin, Derya
    Lopez-Sanchez, Aida
    Pla, Eduardo
    Burton, John
    Velazquez, Javier
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2024, 134
  • [3] Deep Learning Based Water Feature Mapping Using Sentinel-2 Satellite Image
    Chaurasia, Kuldeep
    Dixit, Mayank
    Goyal, Ayush
    Uthej, K.
    Adhithyaram, S.
    Soni, Anushka
    Ghandi, Uttam
    SPIE FUTURE SENSING TECHNOLOGIES 2021, 2021, 11914
  • [4] MACHINE LEARNING FOR AUTOMATIC EXTRACTION OF WATER BODIES USING SENTINEL-2 IMAGERY
    V. Yu., Kashtan
    Hnatushenko, V. V.
    RADIO ELECTRONICS COMPUTER SCIENCE CONTROL, 2024, (01) : 118 - 127
  • [5] Useable Machine Learning for Sentinel-2 multispectral satellite imagery
    Langevin, Scott
    Bethune, Chris
    Horne, Philippe
    Kramer, Steve
    Gleason, Jeffrey
    Johnson, Ben
    Barnett, Ezekiel
    Husain, Fahd
    Bradley, Adam
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXVII, 2021, 11862
  • [6] Forest Disturbance Monitoring Using Cloud-Based Sentinel-2 Satellite Imagery and Machine Learning
    Molnar, Tamas
    Kiraly, Geza
    JOURNAL OF IMAGING, 2024, 10 (01)
  • [7] Greenhouse Mapping using Object Based Classification and Sentinel-2 Satellite Imagery
    Balcik, Filiz Bektas
    Senel, Gizem
    Goksel, Cigdem
    2019 8TH INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS (AGRO-GEOINFORMATICS), 2019,
  • [8] Deep Learning and Transfer Learning applied to Sentinel-1 DInSAR and Sentinel-2 optical satellite imagery for change detection
    Karim, Zainoolabadien
    van Zyl, Terence
    2020 INTERNATIONAL SAUPEC/ROBMECH/PRASA CONFERENCE, 2020, : 579 - 585
  • [9] MAPPING AND MONITORING WETLANDS USING SENTINEL-2 SATELLITE IMAGERY
    Kaplan, G.
    Avdan, U.
    4TH INTERNATIONAL GEOADVANCES WORKSHOP - GEOADVANCES 2017: ISPRS WORKSHOP ON MULTI-DIMENSIONAL & MULTI-SCALE SPATIAL DATA MODELING, 2017, 4-4 (W4): : 271 - 277
  • [10] Deep Learning-Based Automatic Extraction of Cyanobacterial Blooms from Sentinel-2 MSI Satellite Data
    Yan, Kai
    Li, Junsheng
    Zhao, Huan
    Wang, Chen
    Hong, Danfeng
    Du, Yichen
    Mu, Yunchang
    Tian, Bin
    Xie, Ya
    Yin, Ziyao
    Zhang, Fangfang
    Wang, Shenglei
    REMOTE SENSING, 2022, 14 (19)