Automated Segmentation of Head-And-Neck CT Images for Radiotherapy Treatment Planning Via Multi-Atlas Machine Learning (MAML)

被引:1
|
作者
Ren, X.
Sharp, G.
Gao, H.
机构
关键词
D O I
10.1118/1.4955565
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
SUCBRA04
引用
收藏
页码:3321 / 3321
页数:1
相关论文
共 50 条
  • [1] Gaussian Weighted Multi-Atlas Based Segmentation for Head and Neck Radiotherapy Planning
    Peroni, M.
    Sharp, G. C.
    Golland, P.
    Baroni, G.
    MEDICAL PHYSICS, 2012, 39 (06) : 3959 - 3959
  • [2] Multi-Atlas Based Auto-Segmentation of Low-Risk Clinical Target Volume (CTV) for Head-and-Neck Radiotherapy
    Yang, J.
    Williamson, R.
    Garden, A.
    Rosenthal, D.
    Zhang, Y.
    Zhang, L.
    Ang, K.
    Dong, L.
    MEDICAL PHYSICS, 2011, 38 (06)
  • [3] Comparison of atlas-based and deep learning methods for organs at risk delineation on head-and-neck CT images using an automated treatment planning system
    Costea, Madalina
    Zlate, Alexandra
    Durand, Morgane
    Baudier, Thomas
    Gregoire, Vincent
    Sarrut, David
    Biston, Marie-Claude
    RADIOTHERAPY AND ONCOLOGY, 2022, 177 : 61 - 70
  • [4] Multi-atlas and unsupervised learning approach to perirectal space segmentation in CT images
    Soumya Ghose
    James W. Denham
    Martin A. Ebert
    Angel Kennedy
    Jhimli Mitra
    Jason A. Dowling
    Australasian Physical & Engineering Sciences in Medicine, 2016, 39 : 933 - 941
  • [5] Multi-atlas and unsupervised learning approach to perirectal space segmentation in CT images
    Ghose, Soumya
    Denham, James W.
    Ebert, Martin A.
    Kennedy, Angel
    Mitra, Jhimli
    Dowling, Jason A.
    AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE, 2016, 39 (04) : 933 - 941
  • [6] Multi-atlas-based Segmentation of the Parotid Glands of MR Images in Patients Following Head-and-neck Cancer Radiotherapy
    Cheng, Guanghui
    Yang, Xiaofeng
    Wu, Ning
    Xu, Zhijian
    Zhao, Hongfu
    Wang, Yuefeng
    Liu, Tian
    MEDICAL IMAGING 2013: COMPUTER-AIDED DIAGNOSIS, 2013, 8670
  • [7] Validation of clinical acceptability of deep-learning-based automated segmentation of organs-at-risk for head-and-neck radiotherapy treatment planning
    Lucido, J. John
    DeWees, Todd A.
    Leavitt, Todd R.
    Anand, Aman
    Beltran, Chris J.
    Brooke, Mark D.
    Buroker, Justine R.
    Foote, Robert L.
    Foss, Olivia R.
    Gleason, Angela M.
    Hodge, Teresa L.
    Hughes, Cian O.
    Hunzeker, Ashley E.
    Laack, Nadia N.
    Lenz, Tamra K.
    Livne, Michelle
    Morigami, Megumi
    Moseley, Douglas J.
    Undahl, Lisa M.
    Patel, Yojan
    Tryggestad, Erik J.
    Walker, Megan Z.
    Zverovitch, Alexei
    Patel, Samir H.
    FRONTIERS IN ONCOLOGY, 2023, 13
  • [8] Automatic segmentation of the prostate on CT images using deep learning and multi-atlas fusion
    Ma, Ling
    Guo, Rongrong
    Zhang, Guoyi
    Tade, Funmilayo
    Schuster, David M.
    Nieh, Peter
    Master, Viraj
    Fei, Baowei
    MEDICAL IMAGING 2017: IMAGE PROCESSING, 2017, 10133
  • [9] Multi-Atlas Based Automatic Organ Segmentation for Lung Radiotherapy Planning
    Kim, J.
    Han, J.
    Ailawadi, S.
    Baker, J.
    Hsia, A.
    Xu, Z.
    Ryu, S.
    MEDICAL PHYSICS, 2016, 43 (06) : 3433 - 3433
  • [10] Applying Machine Learning for Automated Liver Segmentation On Radiotherapy Planning CT
    Baek, S.
    Sun, Z.
    Yaddanapudi, S.
    Kim, Y.
    Gross, B.
    Hawkes, K.
    McCune, K.
    Yuan, T.
    Xia, J.
    MEDICAL PHYSICS, 2018, 45 (06) : E565 - E565