A simple mathematical model for anomalous diffusion via Fisher's information theory

被引:30
|
作者
Ubriaco, Marcelo R. [1 ]
机构
[1] Univ Puerto Rico, Dept Phys, Theoret Phys Lab, Rio Piedras, PR 00931 USA
关键词
Entropy; Fisher information; Anomalous diffusion; FOKKER-PLANCK EQUATION; STATISTICAL-MECHANICS; FRACTIONAL DIFFUSION; ENTROPIES; TSALLIS;
D O I
10.1016/j.physleta.2009.08.064
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Starting with the relative entropy based on a previously proposed entropy function S-q vertical bar P vertical bar = integral dx p(x) x (-In p(x))(q), we find the corresponding Fisher's information measure. After function redefinition we then maximize the Fisher information measure with respect to the new function and obtain a differential operator that reduces to a space coordinate second derivative in the q 1 limit. We then propose a simple differential equation for anomalous diffusion and show that its solutions are a generalization or the functions in the Barenblatt-Pattie solution. We find that the mean squared displacement, Lip to a q-dependent constant, has a time dependence according to < x(2)> similar to K(1/q)t(1/q), where the parameter q takes values q = 2n-1/sn+1 (superdiffusion) and q = 2n+1/2n-1 (subdiffusion), for all n >= 1. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:4017 / 4021
页数:5
相关论文
共 50 条
  • [1] A simple diffusion model showing anomalous scaling
    Rowlands, G.
    Sproft, J. C.
    PHYSICS OF PLASMAS, 2008, 15 (08)
  • [2] Irving Fisher's mathematical investigations in the theory of value and prices
    Schwalbe, U
    ECONOMICS OF IRVING FISHER: REVIEWING THE SCIENTIFIC WORK OF A GREAT ECONOMIST, 1999, : 281 - 303
  • [3] Sustainable theory of a logistic model - Fisher information approach
    Al-Saffar, Avan
    Kim, Eun-jin
    MATHEMATICAL BIOSCIENCES, 2017, 285 : 81 - 91
  • [4] Mathematical model for acid water neutralization with anomalous and fast diffusion
    Ceretani, A.
    Bollati, J.
    Fusi, L.
    Rosso, F.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 41 : 509 - 528
  • [5] Simple mathematical model for water diffusion in Nafion® membranes
    St-Pierre, J
    PROTON CONDUCTING MEMBRANE FUEL CELLS III, PROCEEDINGS, 2005, 2002 (31): : 373 - 387
  • [6] Simple mathematical model for water diffusion in Nafion membranes
    St-Pierre, Jean
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (01) : B88 - B95
  • [7] Nonlinear anomalous information diffusion model in social networks
    Foroozani, Ahmad
    Ebrahimi, Morteza
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 103
  • [8] Teaching Fisher's theory of interest in a simple auction setting
    Swanton, DW
    JOURNAL OF ECONOMIC EDUCATION, 1999, 30 (01): : 43 - 51
  • [9] Information Geometry and Population Genetics: The Mathematical Structure of the Wright-Fisher Model
    Pandey, Ranjita
    CANADIAN STUDIES IN POPULATION, 2018, 45 (1-2) : 93 - 94
  • [10] A novel mathematical model on generalized thermoelastic diffusion theory
    Paul, Kamalesh
    Mukhopadhyay, Basudeb
    JOURNAL OF THERMAL STRESSES, 2023, 46 (04) : 253 - 275