Estimation and application of spatially variable noise fields in diffusion tensor imaging

被引:27
|
作者
Landman, Bennett A. [1 ]
Bazin, Pierre-Louis [2 ]
Prince, Jerry L. [1 ]
机构
[1] Johns Hopkins Univ, Dept Biomed Engn, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Neuroradiol Div, Baltimore, MD 21287 USA
关键词
Noise; Noise field; DTI; MRI; Brain; PRINCIPAL EIGENVECTOR MEASUREMENTS; MAGNETIC-RESONANCE IMAGES; FRACTIONAL ANISOTROPY; MEAN DIFFUSIVITY; RICIAN NOISE; SIGNAL; MRI; RATIO; REPRODUCIBILITY; PERFORMANCE;
D O I
10.1016/j.mri.2009.01.001
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Optimal interpretation of magnetic resonance image content often requires an estimate of the underlying image noise, which is typically realized as a spatially invariant estimate of the noise distribution. This is not an ideal practice in diffusion tensor imaging because the noise distribution is usually spatially varying due to the use of fast imaging and noise suppression techniques. A new estimation approach for spatially varying noise fields (NFs) is proposed in this article. The approach is based on a noise invariance property in scenarios in which more than one image, each with potentially different signal levels, is acquired on each slice, as in diffusion-weighted MRI. This technique leads to improved NF estimates in simulations, phantom experiments and in vivo studies when compared to traditional NF estimators that use regional variability or background intensity histograms. The proposed method reduces the NF estimation error by a factor of 100 in simulations, shows a strong linear correlation (R-2 = 0.99) between theoretical and estimated noise changes in phantoms and demonstrates consistent (<5% variability) NF estimates in vivo. The advantages of spatially varying NF estimation are demonstrated for power analysis, outlier detection and tensor estimation. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:741 / 751
页数:11
相关论文
共 50 条
  • [1] Robust Estimation of Spatially Variable Noise Fields
    Landman, Bennett A.
    Bazin, Pierre-Louis
    Smith, Seth A.
    Prince, Jerry L.
    MAGNETIC RESONANCE IN MEDICINE, 2009, 62 (02) : 500 - 509
  • [2] Robust Correction of Spike Noise: Application to Diffusion Tensor Imaging
    Chavez, S.
    Storey, P.
    Graham, S. J.
    MAGNETIC RESONANCE IN MEDICINE, 2009, 62 (02) : 510 - 519
  • [3] Robust tensor estimation in diffusion tensor imaging
    Maximov, Ivan I.
    Grinberg, Farida
    Shah, N. Jon
    JOURNAL OF MAGNETIC RESONANCE, 2011, 213 (01) : 136 - 144
  • [4] Application of diffusion tensor imaging in neurosurgery
    Saur, Ralf
    Gharabaghi, Alireza
    Erb, Michael
    ZEITSCHRIFT FUR MEDIZINISCHE PHYSIK, 2007, 17 (04): : 258 - 265
  • [5] Spatially variable Rician noise in magnetic resonance imaging
    Maximov, Ivan I.
    Farrher, Ezequiel
    Grinberg, Farida
    Shah, N. Jon
    MEDICAL IMAGE ANALYSIS, 2012, 16 (02) : 536 - 548
  • [6] The effect of concomitant gradient fields on diffusion tensor imaging
    Baron, C. A.
    Lebel, R. M.
    Wilman, A. H.
    Beaulieu, C.
    MAGNETIC RESONANCE IN MEDICINE, 2012, 68 (04) : 1190 - 1201
  • [7] Noise removal in magnetic resonance diffusion tensor imaging
    Chen, B
    Hsu, EW
    MAGNETIC RESONANCE IN MEDICINE, 2005, 54 (02) : 393 - 401
  • [8] Theoretical analysis of the effects of noise on diffusion tensor imaging
    Anderson, AW
    MAGNETIC RESONANCE IN MEDICINE, 2001, 46 (06) : 1174 - 1188
  • [9] Using Perturbation theory to reduce noise in diffusion tensor fields
    Bansal, Ravi
    Staib, Lawrence H.
    Xu, Dongrong
    Laine, Andrew F.
    Liu, Jun
    Peterson, Bradley S.
    MEDICAL IMAGE ANALYSIS, 2009, 13 (04) : 580 - 597
  • [10] Application of Diffusion Tensor Imaging in Obstructive Nephropathy
    Xu, Hua-Jian
    Zhang, Hanwen
    Yu, Juan
    Lin, Fan
    Lei, Yi
    IRANIAN JOURNAL OF RADIOLOGY, 2021, 18 (03)