Towards a Multi-cluster Analytical Engine for Transportation Data

被引:10
|
作者
Shtern, Mark [1 ]
Mian, Rizwan [1 ]
Litoiu, Marin [1 ]
Zareian, Saeed [1 ]
Abdelgawad, Hossam [2 ]
Tizghadam, Ali [2 ]
机构
[1] York Univ, Toronto, ON M3J 2R7, Canada
[2] Univ Toronto, Toronto, ON, Canada
关键词
Big Data; Analytical Engine; Intelligent Transportation System (ITS); Godzilla;
D O I
10.1109/ICCAC.2014.37
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the new digital age, the pace and volume of growing transportation related data is exceeding our ability to manage and analyze it. In this position paper, we present a data engine, Godzilla, to ingest real-time traffic data and support analytic and data mining over traffic data. Godzilla is a multi-cluster approach to handle large volumes of growing data, changing workloads and varying number of users. The data originates at multiple sources, and consists of multiple types. Meanwhile, the workloads belong to three camps, namely batch processing, interactive queries and graph analysis. Godzilla support multiple language abstractions from scripting to SQL-like language.
引用
收藏
页码:249 / 257
页数:9
相关论文
共 50 条
  • [1] Analytical modeling of interconnection networks in heterogeneous multi-cluster systems
    Javadi, Bahman
    Abawajy, Jemal H.
    Akbari, Mohammad K.
    [J]. JOURNAL OF SUPERCOMPUTING, 2007, 40 (01): : 29 - 47
  • [2] Analytical modeling of interconnection networks in heterogeneous multi-cluster systems
    Bahman Javadi
    Jemal H. Abawajy
    Mohammad K. Akbari
    [J]. The Journal of Supercomputing, 2007, 40 : 29 - 47
  • [3] Analytical interconnection networks model for multi-cluster computing systems
    Javadi, Bahman
    Abawajy, Jemal H.
    Akbari, Mohammad K.
    [J]. ASMTA 2006: 13TH INTERNATIONAL CONFERENCE ON ANALYTICAL AND STOCHASTIC MODELLING TECHNIQUES AND APPLICATIONS, PROCEEDINGS, 2006, : 37 - 42
  • [4] Efficient multi-cluster feature selection on text data
    Gupta, Ananya
    Begum, Shahin Ara
    [J]. JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2019, 40 (08): : 1583 - 1598
  • [5] Hierarchical Spark: A Multi-cluster Big Data Computing Framework
    Liu, Zixia
    Zhang, Hong
    Wang, Liqiang
    [J]. 2017 IEEE 10TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING (CLOUD), 2017, : 90 - 97
  • [6] Passage method for nonlinear dimensionality reduction of data on multi-cluster manifolds
    Meng, Deyu
    Leung, Yee
    Xu, Zongben
    [J]. PATTERN RECOGNITION, 2013, 46 (08) : 2175 - 2186
  • [7] Feature Selection on Data Stream via Multi-Cluster structure Preservation
    Ma, Rui
    Wang, Yijie
    Cheng, Li
    [J]. CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 1065 - 1074
  • [8] A Comparative Study on Feature Selection Techniques for Multi-cluster Text Data
    Gupta, Ananya
    Begum, Shahin Ara
    [J]. HARMONY SEARCH AND NATURE INSPIRED OPTIMIZATION ALGORITHMS, 2019, 741 : 203 - 215
  • [9] Localized communications of data parallel programs on multi-cluster grid systems
    Hsu, CH
    Lo, TT
    Yu, KM
    [J]. ADVANCES IN GRID COMPUTING - EGC 2005, 2005, 3470 : 900 - 910
  • [10] ClusterLink: A Multi-Cluster Application Interconnect
    Toledo, Kfir
    Kannan, Pravein G.
    Malka, M.
    Lev-Ran, E.
    Barabash, K.
    Bortnikov, V
    [J]. PROCEEDINGS OF THE 16TH ACM INTERNATIONAL SYSTEMS AND STORAGE CONFERENCE, SYSTOR 2023, 2023, : 138 - 138