Redox Photochemistry on Van Der Waals Surfaces for Reversible Doping in 2D Materials

被引:13
|
作者
Huang, Lingli [1 ,2 ,3 ]
Yang, Tiefeng [1 ,2 ]
Wong, Lok Wing [4 ,5 ]
Zheng, Fangyuan [4 ,5 ]
Chen, Xin [1 ,2 ,3 ]
Lai, Ka Hei [4 ,5 ]
Liu, Haijun [1 ,2 ,3 ]
Quoc Huy Thi [1 ,2 ,3 ]
Shen, Dong [1 ,2 ]
Lee, Chun-Sing [1 ,2 ]
Deng, Qingming [6 ,7 ]
Zhao, Jiong [4 ,5 ]
Thuc Hue Ly [1 ,2 ,3 ]
机构
[1] City Univ Hong Kong, Dept Chem, Hong Kong 999077, Peoples R China
[2] City Univ Hong Kong, Ctr Super Diamond & Adv Films, Hong Kong 999077, Peoples R China
[3] City Univ Hong Kong, Shenzhen Res Inst, Shenzhen 518000, Peoples R China
[4] Hong Kong Polytech Univ, Dept Appl Phys, Hong Kong 999077, Peoples R China
[5] Hong Kong Polytech Univ, Shenzhen Res Inst, Shenzhen 518000, Peoples R China
[6] Huaiyin Normal Univ, Phys Dept, Huaian 223300, Peoples R China
[7] Huaiyin Normal Univ, Jiangsu Key Lab Chem Low Dimens Mat, Huaian 223300, Peoples R China
基金
美国国家科学基金会;
关键词
anisotropic; photochemistry; redox; reversible doping; 2D materials; OXYGEN REDUCTION; TRANSITION; MONOLAYER; HYDROGENATION; LAYER;
D O I
10.1002/adfm.202009166
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Despite the van der Waals (vdW) surfaces are usually chemically inert, un-destructive, scalable, and reversible redox reactions are introduced on the vdW surfaces of 2D anisotropic semiconductors ReX2 (X = S or Se) facilitated by simple photochemistry. Ultraviolet (UV) light (with humid) and laser exposure can reversibly oxidize and reduce rhenium disulfide (ReS2) and rhenium diselenide (ReSe2), respectively, yielding a pronounced doping effect with good control. Evidenced by Raman spectroscopy, dynamic force microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy, the grafting and removal of covalently functionalized oxygen groups on the perfect vdW surfaces are confirmed. The optical and electrical properties can be thereby reversibly tunable in wide ranges. Such optical direct-writing and rewritable capability via solvent/contaminant-free approach for chemical doping are compelling in the coming era of 2D materials.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] 2D materials and van der Waals heterostructures
    Novoselov, K. S.
    Mishchenko, A.
    Carvalho, A.
    Castro Neto, A. H.
    SCIENCE, 2016, 353 (6298)
  • [2] Superlattices based on van der Waals 2D materials
    Ryu, Yu Kyoung
    Frisenda, Riccardo
    Castellanos-Gomez, Andres
    CHEMICAL COMMUNICATIONS, 2019, 55 (77) : 11498 - 11510
  • [3] Utilization of the van der Waals Gap of 2D Materials
    Que, Haifeng
    Jiang, Huaning
    Wang, Xingguo
    Zhai, Pengbo
    Meng, Lingjia
    Zhang, Peng
    Gong, Yongji
    ACTA PHYSICO-CHIMICA SINICA, 2021, 37 (11)
  • [4] Luminescence in 2D Materials and van der Waals Heterostructures
    Jie, Wenjing
    Yang, Zhibin
    Bai, Gongxun
    Hao, Jianhua
    ADVANCED OPTICAL MATERIALS, 2018, 6 (10):
  • [5] Emerging 2D Materials and Their Van Der Waals Heterostructures
    Di Bartolomeo, Antonio
    NANOMATERIALS, 2020, 10 (03)
  • [6] Disorder in van der Waals heterostructures of 2D materials
    Rhodes, Daniel
    Chae, Sang Hoon
    Ribeiro-Palau, Rebeca
    Hone, James
    NATURE MATERIALS, 2019, 18 (06) : 541 - 549
  • [7] Disorder in van der Waals heterostructures of 2D materials
    Daniel Rhodes
    Sang Hoon Chae
    Rebeca Ribeiro-Palau
    James Hone
    Nature Materials, 2019, 18 : 541 - 549
  • [8] Intercorrelated ferroelectrics in 2D van der Waals materials
    Liang, Yan
    Shen, Shiying
    Huang, Baibiao
    Dai, Ying
    Ma, Yandong
    MATERIALS HORIZONS, 2021, 8 (06) : 1683 - 1689
  • [9] Functionalizing nanophotonic structures with 2D van der Waals materials
    Meng, Yuan
    Zhong, Hongkun
    Xu, Zhihao
    He, Tiantian
    Kim, Justin S.
    Han, Sangmoon
    Kim, Sunok
    Park, Seoungwoong
    Shen, Yijie
    Gong, Mali
    Xiao, Qirong
    Bae, Sang-Hoon
    NANOSCALE HORIZONS, 2023, 8 (10) : 1345 - 1365
  • [10] 2D materials and van der Waals heterojunctions for neuromorphic computing
    Zhang, Zirui
    Yang, Dongliang
    Li, Huihan
    Li, Ce
    Wang, Zhongrui
    Sun, Linfeng
    Yang, Heejun
    NEUROMORPHIC COMPUTING AND ENGINEERING, 2022, 2 (03):