Gene ontology driven feature selection from microarray gene expression data

被引:0
|
作者
Qi, Jianlong [1 ]
Tang, Jian [1 ]
机构
[1] Mem Univ Newfoundland, Dept Comp Sci, St John, NF A1B 3X5, Canada
关键词
D O I
暂无
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
One of the main challenges in the classification of microarray gene expression data is the small sample size compared with the large number of genes, so feature selection is an essential step to remove genes not relevant to class label. Traditional gene selection methods often select the top-ranked genes based on their individual discriminative powers. The problem with these simple ranking models is that they evaluate genes in isolation and this may introduce redundancy among the selected feature subset. Most redundancy based methods solely evaluate gene expression levels. This may decrease the effectiveness of feature selection since some values may not be accurately measured. In this paper, we propose a gene ontology based method for feature selection. The novelty of this model is to detect redundancy between a pair of genes by the convex combination of their expression similarity and semantic similarity in gene ontology. The effectiveness of our method is demonstrated by the experiment in two widely used datasets.
引用
收藏
页码:428 / +
页数:2
相关论文
共 50 条
  • [1] Minimum redundancy feature selection from microarray gene expression data
    Ding, C
    Peng, HC
    [J]. PROCEEDINGS OF THE 2003 IEEE BIOINFORMATICS CONFERENCE, 2003, : 523 - 528
  • [2] A hybrid feature selection approach for microarray gene expression data
    Tan, Feng
    Fu, Xuezheng
    Wang, Hao
    Zhang, Yanqing
    Bourgeois, Anu
    [J]. COMPUTATIONAL SCIENCE - ICCS 2006, PT 2, PROCEEDINGS, 2006, 3992 : 678 - 685
  • [3] Quality of feature selection based on microarray gene expression data
    Maciejewski, Henryk
    [J]. COMPUTATIONAL SCIENCE - ICCS 2008, PT 3, 2008, 5103 : 140 - 147
  • [4] Integrating Gene Ontology into Discriminative Powers of Genes for Feature Selection in Microarray Data
    Qi, Jianlong
    Tang, Jian
    [J]. APPLIED COMPUTING 2007, VOL 1 AND 2, 2007, : 430 - 434
  • [5] Incremental forward feature selection with application to microarray gene expression data
    Lee, Yuh-Jye
    Chang, Chien-Chung
    Chao, Chia-Huang
    [J]. JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2008, 18 (05) : 827 - 840
  • [6] Feature selection and gene clustering from gene expression data
    Mitra, P
    Majumder, DD
    [J]. PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 2, 2004, : 343 - 346
  • [7] Spermatogenesis-related Gene Selection with DNA microarray Data and Gene Ontology
    Shi, Jiesi
    Liu, Weixiang
    Gong, Tianxue
    Tao, Lan
    Tang, Aifa
    [J]. 2011 INTERNATIONAL CONFERENCE ON ENVIRONMENT SCIENCE AND BIOTECHNOLOGY (ICESB 2011), 2011, 8 : 609 - 614
  • [8] Combination of Feature Selection Methods for the Effective Classification of Microarray Gene Expression Data
    Sheela, T.
    Rangarajan, Lalitha
    [J]. RECENT TRENDS IN IMAGE PROCESSING AND PATTERN RECOGNITION (RTIP2R 2016), 2017, 709 : 137 - 145
  • [9] Feature selection methods in microarray gene expression data: a systematic mapping study
    Mahnaz Vahmiyan
    Mohammadtaghi Kheirabadi
    Ebrahim Akbari
    [J]. Neural Computing and Applications, 2022, 34 : 19675 - 19702
  • [10] Feature Selection in Microarray Gene Expression Data Using Fisher Discriminant Ratio
    Sarbazi-Azad, Saeed
    Abadeh, Mohammad Saniee
    Abadi, Mehdi Irannejad Najaf
    [J]. 2018 8TH INTERNATIONAL CONFERENCE ON COMPUTER AND KNOWLEDGE ENGINEERING (ICCKE), 2018, : 225 - 230