Further decompositions of complete tripartite graphs into 5-cycles

被引:9
|
作者
Cavenagh, NJ [1 ]
机构
[1] Univ Queensland, Ctr Discrete Math & Comp, Dept Math Sci, St Lucia, Qld 4072, Australia
关键词
graph decomposition; complete tripartite graph 5-cycle; trade;
D O I
10.1016/S0012-365X(01)00462-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K(r,s,t) denote the complete tripartite graph with partite sets of sizes r, s and t, where r less than or equal to s less than or equal to t. Necessary and sufficient conditions are given for decomposability of K(r, s, t) into 5-cycles whenever r, s and t are all even. This extends work done by Mahmoodian and Mirza-khani (Decomposition of complete tripartite graphs into 5-cycles, in: Combinatorics Advances, Kluwer Academic Publishers, Netherlands, 1995, pp. 235-241) and Cavenagh and Billington. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:55 / 81
页数:27
相关论文
共 50 条
  • [1] On decomposing complete tripartite graphs into 5-cycles
    Alipour, Sharareh
    Mahmoodian, E. S.
    Mollaahmadi, E.
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2012, 54 : 289 - 301
  • [2] Decompositions of graphs into 5-cycles and other graphs
    Sousa, T
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2005, 12 (01):
  • [3] Decomposing complete tripartite graphs into 5-cycles when the partite sets have similar size
    Billington, Elizabeth J.
    Cavenagh, Nicholas J.
    [J]. AEQUATIONES MATHEMATICAE, 2011, 82 (03) : 277 - 289
  • [4] Decompositions of complete tripartite graphs into cycles of lengths 3 and 6
    Ganesamurthy, S.
    Paulraja, P.
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2019, 73 : 220 - 241
  • [5] Decomposing complete tripartite graphs into 5-cycles when the partite sets have similar size
    Elizabeth J. Billington
    Nicholas J. Cavenagh
    [J]. Aequationes mathematicae, 2011, 82 : 277 - 289
  • [6] On Cyclic Decompositions of Complete Graphs into Tripartite Graphs
    Bunge, Ryan C.
    Chantasartrassmee, Avapa
    El-Zanati, Saad I.
    Eynden, Charles Vanden
    [J]. JOURNAL OF GRAPH THEORY, 2013, 72 (01) : 90 - 111
  • [7] Almost resolvable maximum packings of complete graphs with 5-cycles
    Zhou, Min
    Cao, Haitao
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2015, 10 (02) : 461 - 475
  • [8] Almost resolvable maximum packings of complete graphs with 5-cycles
    Min Zhou
    Haitao Cao
    [J]. Frontiers of Mathematics in China, 2015, 10 : 461 - 475
  • [9] Number of disjoint 5-cycles in graphs
    Hayashi, Kotaro
    [J]. ARS COMBINATORIA, 2010, 96 : 295 - 320
  • [10] ON 1-ROTATIONAL DECOMPOSITIONS OF COMPLETE GRAPHS INTO TRIPARTITE GRAPHS
    Bunge, Ryan C.
    [J]. OPUSCULA MATHEMATICA, 2019, 39 (05) : 623 - 643