Wormhole solutions in embedding class 1 space-time

被引:6
|
作者
Sarkar, Nayan [1 ,2 ]
Sarkar, Susmita [1 ]
Rahaman, Farook [1 ]
Islam, Safiqul [3 ]
机构
[1] Jadavpur Univ, Dept Math, Kolkata 700032, India
[2] Karimpur Pannadevi Coll, Dept Math, Nadia 741152, W Bengal, India
[3] St Theresa Int Coll, Dept Math, Bueng San, Thailand
来源
关键词
Embedding class 1 space-time; redshift function; traversable wormhole; GRAVITATIONAL-FIELD;
D O I
10.1142/S0217751X21500159
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The present work looks for new spherically symmetric wormhole solutions of the Einstein field equations based on the well-known embedding class 1, i.e. Karmarkar condition. The embedding theorems have an interesting property that connects an n-dimensional space-time to the higher-dimensional Euclidean flat space-time. The Einstein field equations yield the wormhole solution by violating the null energy condition (NEC). Here, wormholes solutions are obtained corresponding to three different redshift functions: rational, logarithm, and inverse trigonometric functions, in embedding class 1 space-time. The obtained shape function in each case satisfies the flare-out condition after the throat radius, i.e. good enough to represents wormhole structure. In cases of WH1 and WH2, the solutions violate the NEC as well as strong energy condition (SEC), i.e. here the exotic matter content exists within the wormholes and strongly sustains wormhole structures. In the case of WH3, the solution violates NEC but satisfies SEC, so for violating the NEC wormhole preserve due to the presence of exotic matter. Moreover, WH1 and WH2 are asymptotically flat while WH3 is not asymptotically flat. So, indeed, WH3 cutoff after some radial distance r = r1 > rs, the Schwarzschild radius, and match to the external vacuum solution.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] WORMHOLE SOLUTIONS IN THE KANTOWSKI-SACHS SPACE-TIME
    CAVAGLIA, M
    [J]. MODERN PHYSICS LETTERS A, 1994, 9 (21) : 1897 - 1903
  • [2] Relativistic parametric embedding class I solutions of cold stars in Karmarkar space-time continuum
    Upreti, Jaya
    Gedela, Satyanarayana
    Pant, Neeraj
    Pant, R. P.
    [J]. NEW ASTRONOMY, 2020, 80
  • [3] An EGD model in the background of embedding class I space-time
    Maurya, S. K.
    Tello-Ortiz, Francisco
    Jasim, M. K.
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2020, 80 (10):
  • [4] Wormhole in higher-dimensional space-time
    Shinkai, Hisa-aki
    Torii, Takashi
    [J]. SPANISH RELATIVITY MEETING (ERE 2014): ALMOST 100 YEARS AFTER EINSTEIN'S REVOLUTION, 2015, 600
  • [5] Energy of rigidly rotating wormhole space-time
    Ayguen, Melis
    Yilmaz, Ihsan
    Ayguen, Sezgin
    [J]. SIX INTERNATIONAL CONFERENCE OF THE BALKAN PHYSICAL UNION, 2007, 899 : 159 - +
  • [6] Ground state energy in a wormhole space-time
    Khusnutdinov, NR
    Sushkov, SV
    [J]. PHYSICAL REVIEW D, 2002, 65 (08): : 840281 - 8402815
  • [7] CLASS OF SPACE-TIME SOLUTIONS OF EINSTEIN-MAXWELL EQUATIONS
    LEROY, J
    [J]. BULLETIN DE LA CLASSE DES SCIENCES ACADEMIE ROYALE DE BELGIQUE, 1978, 64 (04): : 130 - 152
  • [8] Energy and momentum of Rigidly Rotating Wormhole space-time
    Aygun, Melis
    Yilmaz, Ihsan
    Aygun, Sezgin
    [J]. ACTA PHYSICA POLONICA B, 2006, 37 (10): : 2795 - 2803
  • [9] A Class of General Solutions of the Maxwell Equations in the Kerr Space-Time
    Pelykh V.O.
    Taistra Y.V.
    [J]. Journal of Mathematical Sciences, 2018, 229 (2) : 162 - 173
  • [10] Space-time means and solutions to a class of nonlinear parabolic equations
    Boling Guo
    Changxing Miao
    [J]. Science in China Series A: Mathematics, 1998, 41 : 682 - 693