Aspect-gated graph convolutional networks for aspect-based sentiment analysis

被引:43
|
作者
Lu, Qiang [1 ]
Zhu, Zhenfang [1 ]
Zhang, Guangyuan [1 ]
Kang, Shiyong [2 ]
Liu, Peiyu [3 ]
机构
[1] Shandong Jiao Tong Univ, Sch Informat Sci & Elect Engn, Jinan 250357, Peoples R China
[2] Lu Dong Univ, Chinese Lexicog Res Ctr, Yantai 264025, Peoples R China
[3] Shandong Normal Univ, Sch Informat Sci & Engn, Jinan 250358, Peoples R China
关键词
Aspect-based sentiment analysis; Graph convolutional networks; Aspect gate; Aspect-specific; MACHINE;
D O I
10.1007/s10489-020-02095-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Aspect-based sentiment analysis aims to predict the sentiment polarity of each specific aspect term in a given sentence. However, the previous models ignore syntactical constraints and long-range sentiment dependencies and mistakenly identify irrelevant contextual words as clues for judging aspect sentiment. In addition, these models usually use aspect-independent encoders to encode sentences, which can lead to a lack of aspect information. In this paper, we propose an aspect-gated graph convolutional network (AGGCN), that includes a special aspect gate designed to guide the encoding of aspect-specific information from the outset and construct a graph convolution network on the sentence dependency tree to make full use of the syntactical information and sentiment dependencies. The experimental results on multiple SemEval datasets demonstrate the effectiveness of the proposed approach, and our model outperforms the strong baseline models.
引用
收藏
页码:4408 / 4419
页数:12
相关论文
共 50 条
  • [1] Aspect-gated graph convolutional networks for aspect-based sentiment analysis
    Qiang Lu
    Zhenfang Zhu
    Guangyuan Zhang
    Shiyong Kang
    Peiyu Liu
    Applied Intelligence, 2021, 51 : 4408 - 4419
  • [2] Multiple graph convolutional networks for aspect-based sentiment analysis
    Yuting Ma
    Rui Song
    Xue Gu
    Qiang Shen
    Hao Xu
    Applied Intelligence, 2023, 53 : 12985 - 12998
  • [3] Multiple graph convolutional networks for aspect-based sentiment analysis
    Ma, Yuting
    Song, Rui
    Gu, Xue
    Shen, Qiang
    Xu, Hao
    APPLIED INTELLIGENCE, 2023, 53 (10) : 12985 - 12998
  • [4] Modelling Context with Graph Convolutional Networks for Aspect-based Sentiment Analysis
    Zhang, Maoyuan
    Zhang, Jieqiong
    Liu, Lisha
    21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS ICDMW 2021, 2021, : 194 - 200
  • [5] Aspect-based Sentiment Classification with Aspect-specific Graph Convolutional Networks
    Zhang, Chen
    Li, Qiuchi
    Song, Dawei
    2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019): PROCEEDINGS OF THE CONFERENCE, 2019, : 4568 - 4578
  • [6] Graph Convolutional Networks with POS Gate for Aspect-Based Sentiment Analysis
    Kim, Dahye
    Kim, YoungJin
    Jeong, Young-Seob
    APPLIED SCIENCES-BASEL, 2022, 12 (19):
  • [7] Interactive Double Graph Convolutional Networks for Aspect-based Sentiment Analysis
    Wang, Xue
    Liu, Peiyu
    Zhu, Zhenfang
    Lu, Ran
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [8] Improving Aspect-based Sentiment Analysis with Gated Graph Convolutional Networks and Syntax-based Regulation
    Ben Veyseh, Amir Pouran
    Nouri, Nasim
    Dernoncourt, Franck
    Quan Hung Tran
    Dou, Dejing
    Thien Huu Nguyen
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EMNLP 2020, 2020, : 4543 - 4548
  • [9] Lexical attention and aspect-oriented graph convolutional networks for aspect-based sentiment analysis
    Li, Wenwen
    Yin, Shiqun
    Pu, Ting
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 42 (03) : 1643 - 1654
  • [10] Aspect-Guided Multi-Graph Convolutional Networks for Aspect-based Sentiment Analysis
    Wang, Yong
    Yang, Ningchuang
    Miao, Duoqian
    Chen, Qiuyi
    DATA INTELLIGENCE, 2024, 6 (03) : 771 - 791