Sensing thermal conductivity and structural effects at the nanoscale by scanning thermal microscopy (SThM)

被引:7
|
作者
Chirtoc, M.
Gibkes, J.
Antoniow, J. -S.
Henry, J. -F.
Neubauer, E.
Bein, B.
Pelzl, J.
机构
[1] UTAP, UFR Sci Lab Thermophys, LTP, F-51687 Reims 2, France
[2] Ruhr Univ Bochum, Inst Expt Phys, D-44801 Bochum, Germany
[3] ARC Seibersdorf Res, Dept Mat Res, A-2444 Seibersdorf, Austria
来源
JOURNAL DE PHYSIQUE IV | 2006年 / 137卷
关键词
D O I
10.1051/jp4:2006137053
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce the theoretical description of 3 omega signal from the Wollaston probe of a scanning thermal microscope (SThM) in terms of an equivalent low-pass filter. We performed thermal conductivity k measurements with lateral resolution of about 100 nm. The first application concerns NiTi shape memory alloys microstructured by focused ion beam implantation. Local martensite to austenite structural phase transition has been identified upon heating the sample from room temperature to 100 degrees C. The 3 omega signal changes were -1.95% in amplitude and 0.6 degrees in phase, corresponding to thermal conductivity k increase of 13.5%. The second application consists of static measurement of local k on points situated on flat faces of bare diamond crystallites 300 mu m in diameter, and on crystallites coated with Cr, Cu and Cu/Cr layers with thickness in the range 0.5-30 mu m. The high k advantage of bare crystallites is lost upon coating the particles, but the thermal barrier depends also on the specific configuration when the particles are in contact to one another in materials obtained from such powders.
引用
收藏
页码:265 / 271
页数:7
相关论文
共 50 条
  • [1] Studying thermal conductivity of wood at cell wall level by scanning thermal microscopy (SThM)
    Vay, Oliver
    Obersriebnig, Michael
    Mueller, Ulrich
    Konnerth, Johannes
    Gindl-Altmutter, Wolfgang
    HOLZFORSCHUNG, 2013, 67 (02) : 155 - 159
  • [2] Development of a Novel Scanning Thermal Microscopy (SThM) Method to Measure the Thermal Conductivity of Biological Cells
    Nakanishi, Kouichi
    Kogure, Akinori
    Kuwana, Ritsuko
    Takamatsu, Hiromu
    Ito, Kiyoshi
    BIOCONTROL SCIENCE, 2017, 22 (03) : 175 - 180
  • [3] Microfabricated high temperature sensing platform dedicated to scanning thermal microscopy (SThM)
    Nguyen, T. P.
    Lemaire, E.
    Euphrasie, S.
    Thiery, L.
    Teyssieux, D.
    Briand, D.
    Vairac, P.
    SENSORS AND ACTUATORS A-PHYSICAL, 2018, 275 : 109 - 118
  • [4] New methods for calibrated Scanning Thermal Microscopy (SThM)
    Dobson, Phillip S.
    Weaver, John M. R.
    Mills, Gordon
    2007 IEEE SENSORS, VOLS 1-3, 2007, : 708 - 711
  • [5] A Review on Principles and Applications of Scanning Thermal Microscopy (SThM)
    Zhang, Yun
    Zhu, Wenkai
    Hui, Fei
    Lanza, Mario
    Borca-Tasciuc, Theodorian
    Rojo, Miguel Munoz
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (18)
  • [6] Failure analysis of integrated devices by Scanning Thermal Microscopy (SThM)
    Fiege, GBM
    Feige, V
    Phang, JCH
    Maywald, M
    Gorlich, S
    Balk, LJ
    MICROELECTRONICS RELIABILITY, 1998, 38 (6-8) : 957 - 961
  • [7] Effects of sample topography and thermal features in scanning thermal conductivity microscopy
    Sarid, Dror
    Khulbe, Pramod
    Grover, Ranjan
    SOLID STATE COMMUNICATIONS, 2008, 145 (7-8) : 389 - 391
  • [8] Investigation of the accuracy and spatial resolution of Scanning Thermal Microscopy (SThM) technique
    Lo, Hsinyi
    Liu, Wenjun
    Asheghi, Mehdi
    HT2005: Proceedings of the ASME Summer Heat Transfer Conference 2005, Vol 1, 2005, : 71 - 77
  • [9] Nanoscale temperature sensing of electronic devices with calibrated scanning thermal microscopy
    Swoboda, Timm
    Wainstein, Nicolas
    Deshmukh, Sanchit
    Koroglu, Cagil
    Gao, Xing
    Lanza, Mario
    Hilgenkamp, Hans
    Pop, Eric
    Yalon, Eilam
    Munoz Rojo, Miguel
    NANOSCALE, 2023, 15 (15) : 7139 - 7146
  • [10] Nanoscale thermometry by scanning thermal microscopy
    Menges, Fabian
    Riel, Heike
    Stemmer, Andreas
    Gotsmann, Bernd
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (07):