Probabilistic Electromechanical Modeling of Nanostructures with Random Geometry

被引:3
|
作者
Arnst, M. [1 ]
Ghanem, R. [1 ]
机构
[1] Univ So Calif, Los Angeles, CA 90089 USA
关键词
Uncertainty Quantification; Nanoelectromechanical System; Stochastic Finite Element Method; Geometrical Uncertainty; Polynomial Chaos; LAGRANGIAN APPROACH; EQUATIONS;
D O I
10.1166/jctn.2009.1283
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This article is concerned with the probabilistic modeling of the electromechanical behavior of nanostructures to assess the effect of variations in geometrical characteristics on the device performance. The topological uncertainty that may be present in the position of the boundaries of nanostructures is accommodated by treating these boundaries as stochastic processes. It is shown how the probabilistic electromechanical models thus obtained can be discretized with the help of Galerkin projections on polynomial chaos expansions. An illustration is provided to demonstrate the proposed framework.
引用
收藏
页码:2256 / 2272
页数:17
相关论文
共 50 条
  • [1] The Probabilistic Modeling of Random Variation in FGMOSFET
    Banchuin, Rawid
    Chaisricharoen, Roungsan
    2016 13TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING/ELECTRONICS, COMPUTER, TELECOMMUNICATIONS AND INFORMATION TECHNOLOGY (ECTI-CON), 2016,
  • [2] Transforming micro electromechanical systems to nano electromechanical systems ? design, analysis, modeling and simulation of nanostructures
    Shinde, Pramod B.
    Shiurkar, Ulhas D.
    Chittewar, Suresh L.
    Mohan, K. N.
    Ranalkar, M. R.
    MATERIALS TODAY-PROCEEDINGS, 2021, 44 : 1401 - 1405
  • [3] Advances in Probabilistic Modeling: Applications of Stochastic Geometry
    Adams, Martin
    Vo, Ba-Ngu
    Mahler, Ronald
    IEEE ROBOTICS & AUTOMATION MAGAZINE, 2014, 21 (02) : 21 - 24
  • [4] Probabilistic modeling of random variables with inconsistent data
    Qin, Jianjun
    APPLIED MATHEMATICAL MODELLING, 2019, 73 : 401 - 411
  • [5] Modeling and Reliability Evaluation for Electromechanical Systems Based on Probabilistic Behavior Trees
    Yang P.
    Liu Q.
    Fan J.
    Hou Y.
    Zhongguo Jixie Gongcheng/China Mechanical Engineering, 2020, 31 (14): : 1639 - 1646
  • [6] Probabilistic modeling and simulation of wave speeds in random composites
    Baxter, Sarah C.
    Acton, Katherine A.
    PROBABILISTIC ENGINEERING MECHANICS, 2020, 59 (59)
  • [7] Electromechanical phenomena in semiconductor nanostructures
    Voon, L. C. Lew Yan
    Willatzen, M.
    JOURNAL OF APPLIED PHYSICS, 2011, 109 (03)
  • [8] Carbon nanostructures as an electromechanical bicontinuum
    Nisoli, Cristiano
    Lammert, Paul E.
    Mockensturm, Eric
    Crespi, Vincent H.
    PHYSICAL REVIEW LETTERS, 2007, 99 (04)
  • [9] Probabilistic Modeling of Ore Lens Geometry: An Alternative to Deterministic Wireframes
    R. Mohan Srivastava
    Mathematical Geology, 2005, 37 : 513 - 544
  • [10] Probabilistic modeling of ore lens geometry: An alternative to deterministic wireframes
    Srivastava, RM
    MATHEMATICAL GEOLOGY, 2005, 37 (05): : 513 - 544