Topological Insulator Nanowires and Nanoribbons

被引:288
|
作者
Kong, Desheng [1 ]
Randel, Jason C. [2 ,4 ]
Peng, Hailin [1 ]
Cha, Judy J. [1 ]
Meister, Stefan [1 ]
Lai, Keji [2 ,3 ]
Chen, Yulin [2 ,3 ,4 ]
Shen, Zhi-Xun [2 ,3 ,4 ]
Manoharan, Hari C. [2 ,4 ]
Cui, Yi [1 ]
机构
[1] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
[4] Stanford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
关键词
Topological insulator; nanowire; nanoribbon; bismuth selenide; SINGLE DIRAC CONE; BI2SE3; SB2TE3;
D O I
10.1021/nl903663a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Recent theoretical calculations and photoemission spectroscopy measurements on the bulk Bi2Se3 material show that it is a three-dimensional topological insulator possessing conductive surface states with nondegenerate spins, attractive for dissipationless electronics and spintronics applications, Nanoscale topological insulator materials have a large surface-to-volume ratio that can manifest the conductive surface states and are promising candidates for devices. Here we report the synthesis and characterization of high quality single crystalline Bi2Se3 nanomaterials with a variety of morphologies. The synthesis of Bi2Se3 nanowires and nanoribbons employs Au-catalyzed vapor-liquid-solid (VLS) mechanism. Nanowires, which exhibit rough surfaces, are formed by stacking nanoplatelets along the axial direction of the wires. Nanoribbons are grown along [1120] direction with a rectangular cross-section and have diverse morphologies, including quasi-one-dimensional, sheetlike, zigzag and sawtooth shapes. Scanning tunneling microscopy (STM) studies on nanoribbons show atomically smooth surfaces with similar to 1 nm step edges, indicating single Se-Bi-Se-Bi-Se quintuple layers, STM measurements reveal a honeycomb atomic lattice, suggesting that the STM tip couples not only to the top Se atomic layer, but also to the Bi atomic layer underneath, which opens up the possibility to investigate the contribution of different atomic orbitals to the topological surface states. Transport measurements of a single nanoribbon device (four terminal resistance and Hall resistance) show great promise for nanoribbons as candidates to study topological surface states.
引用
收藏
页码:329 / 333
页数:5
相关论文
共 50 条
  • [1] Topological crystalline insulator SnTe nanoribbons
    Dahal, Bishnu R.
    Dulal, Rajendra P.
    Pegg, Ian L.
    Philip, John
    [J]. SOLID STATE COMMUNICATIONS, 2017, 253 : 42 - 45
  • [2] Manipulating surface states in topological insulator nanoribbons
    Xiu, Faxian
    He, Liang
    Wang, Yong
    Cheng, Lina
    Chang, Li-Te
    Lang, Murong
    Huang, Guan
    Kou, Xufeng
    Zhou, Yi
    Jiang, Xiaowei
    Chen, Zhigang
    Zou, Jin
    Shailos, Alexandros
    Wang, Kang L.
    [J]. NATURE NANOTECHNOLOGY, 2011, 6 (04) : 216 - 221
  • [3] Manipulating surface states in topological insulator nanoribbons
    Faxian Xiu
    Liang He
    Yong Wang
    Lina Cheng
    Li-Te Chang
    Murong Lang
    Guan Huang
    Xufeng Kou
    Yi Zhou
    Xiaowei Jiang
    Zhigang Chen
    Jin Zou
    Alexandros Shailos
    Kang L. Wang
    [J]. Nature Nanotechnology, 2011, 6 : 216 - 221
  • [4] Multiple andreev reflections in topological insulator nanoribbons
    Kim, Rak-Hee
    Kim, Nam-Hee
    Kim, Bongkeon
    Hou, Yasen
    Yu, Dong
    Doh, Yong-Joo
    [J]. CURRENT APPLIED PHYSICS, 2022, 34 : 107 - 111
  • [5] Disorder effects in topological insulator nanowires
    Huang, Yi
    Shklovskii, B. I.
    [J]. PHYSICAL REVIEW B, 2021, 104 (05)
  • [6] Plasmons in topological insulator cylindrical nanowires
    Iorio, P.
    Perroni, C. A.
    Cataudella, V.
    [J]. PHYSICAL REVIEW B, 2017, 95 (23)
  • [7] Robustness of topological superconductivity in proximity-coupled topological insulator nanoribbons
    Sitthison, Piyapong
    Stanescu, Tudor D.
    [J]. PHYSICAL REVIEW B, 2014, 90 (03):
  • [8] Aharonov-Bohm interference in topological insulator nanoribbons
    Peng, Hailin
    Lai, Keji
    Kong, Desheng
    Meister, Stefan
    Chen, Yulin
    Qi, Xiao-Liang
    Zhang, Shou-Cheng
    Shen, Zhi-Xun
    Cui, Yi
    [J]. NATURE MATERIALS, 2010, 9 (03) : 225 - 229
  • [9] Quantum Hall edge states in topological insulator nanoribbons
    Pertsova, A.
    Canali, C. M.
    MacDonald, A. H.
    [J]. PHYSICAL REVIEW B, 2016, 94 (12)
  • [10] Aharonov-Bohm interference in topological insulator nanoribbons
    Peng H.
    Lai K.
    Kong D.
    Meister S.
    Chen Y.
    Qi X.-L.
    Zhang S.-C.
    Shen Z.-X.
    Cui Y.
    [J]. Nature Materials, 2010, 9 (3) : 225 - 229