Dehn surgeries and rational homology

被引:13
|
作者
Aceto, Paolo [1 ]
Golla, Marco [2 ]
机构
[1] Alfred Renyi Inst Math, 13-15 Realtanoda U, H-1053 Budapest, Hungary
[2] Uppsala Univ, Dept Math, Box 480, SE-75106 Uppsala, Sweden
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2017年 / 17卷 / 01期
关键词
FLOER HOMOLOGY; LENS SPACES; CONJECTURE;
D O I
10.2140/agt.2017.17.487
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the question of which Dehn surgeries along a given knot bound rational homology balls. We use Ozsvath and Szabo's correction terms in Heegaard Floer homology to obtain general constraints on the surgery coefficients. We then turn our attention to the case of integral surgeries, with particular emphasis on positive torus knots. Finally, combining these results with a lattice-theoretic obstruction based on Donaldson's theorem, we classify which integral surgeries along torus knots of the form Tkq 1; q bound rational homology balls.
引用
收藏
页码:487 / 527
页数:41
相关论文
共 50 条