Model discrimination - another perspective on model-robust designs

被引:20
|
作者
Jones, Bradley A.
Li, William [1 ]
Nachtsheim, Christopher J.
Ye, Kenny Q.
机构
[1] Univ Minnesota, Operat & Math Sci Dept, Minneapolis, MN 55455 USA
[2] SAS Inst, Cary, NC 27513 USA
[3] Yeshiva Univ Albert Einstein Coll Med, Dept Epidemiol & Populat Hlth, Bronx, NY 10461 USA
基金
美国国家科学基金会;
关键词
estimation capacity; information capacity; model discrimination; model-robust design;
D O I
10.1016/j.jspi.2006.09.006
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Recent progress in model-robust designs has focused on maximizing estimation capacities. However, for a given design, two competing models may be both estimable and yet difficult or impossible to discriminate in the model selection procedure. In this paper, we propose several criteria for gauging the capability of a design for model discrimination. The criteria are then used to evaluate a class of 18-run orthogonal designs in terms of their model-discriminating capabilities. We demonstrate that designs having the same estimation capacity may differ considerably with respect to model-discrimination capabilities. The best designs according to the proposed model-discrimination criteria are obtained and tabulated for practical use. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1576 / 1583
页数:8
相关论文
共 50 条
  • [1] Model Discrimination Criteria on Model-Robust Designs
    Androulakis, E.
    Angelopoulos, P.
    Koukouvinos, C.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2014, 43 (07) : 1575 - 1582
  • [2] Model-robust factorial designs
    Li, W
    Nachtsheim, CJ
    [J]. TECHNOMETRICS, 2000, 42 (04) : 345 - 352
  • [3] Model-robust and model-sensitive designs
    Goos, P
    Kobilinsky, A
    O'Brien, TE
    Vandebroek, M
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2005, 49 (01) : 201 - 216
  • [4] Model-robust designs in multiresponse situations
    Yue, RX
    [J]. STATISTICS & PROBABILITY LETTERS, 2002, 58 (04) : 369 - 379
  • [5] Model-Robust Designs for Quantile Regression
    Kong, Linglong
    Wiens, Douglas P.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2015, 110 (509) : 233 - 245
  • [6] Model-robust supersaturated and partially supersaturated designs
    Jones, Bradley A.
    Li, William
    Nachtsheim, Christopher J.
    Ye, Kenny Q.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (01) : 45 - 53
  • [7] Model-robust designs for nonlinear quantile regression
    Selvaratnam, Selvakkadunko
    Kong, Linglong
    Wiens, Douglas P.
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2021, 30 (01) : 221 - 232
  • [8] Exchange Algorithms for Constructing Model-Robust Experimental Designs
    Smucker, Byran J.
    del Castillo, Enrique
    Rosenberger, James L.
    [J]. JOURNAL OF QUALITY TECHNOLOGY, 2011, 43 (01) : 28 - 42
  • [9] Model-robust optimal designs: A genetic algorithm approach
    Heredia-Langner, A
    Montgomery, DC
    Carlyle, WM
    Borror, CM
    [J]. JOURNAL OF QUALITY TECHNOLOGY, 2004, 36 (03) : 263 - 279
  • [10] Model-robust designs for split-plot experiments
    Smucker, Byran J.
    del Castillo, Enrique
    Rosenberger, James L.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (12) : 4111 - 4121