Pieri homotopies for problems in enumerative geometry applied to pole placement in linear systems control

被引:18
|
作者
Huber, B
Verschelde, J
机构
[1] Wolfram Res Inc, Champaign, IL 61820 USA
[2] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60680 USA
[3] Math Sci Res Inst, Berkeley, CA 94720 USA
[4] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
关键词
cheater's homotopy; combinatorial root count; continuation methods; control theory; dynamic pole placement problem; enumerative geometry; Grassmannian; linear system; localization pattern; numerical Schubert calculus; Pieri homotopy; polynomial system; poset; quantum Schubert calculus;
D O I
10.1137/S036301299935657X
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Huber, Sottile, and Sturmfels [J. Symbolic Comput., 26 (1998), pp. 767-788] proposed Pieri homotopies to enumerate all p-planes in Cm+p that meet n given (m + 1 - k(i))-planes in general position, with k(1) + k(2) + ... + k(n) = mp as a condition to have a finite number of solution p-planes. Pieri homotopies turn the deformation arguments of classical Schubert calculus into effective numerical methods by expressing the deformations algebraically and applying numerical path-following techniques. We describe the Pieri homotopy algorithm in terms of a poset of simpler problems. This approach is more intuitive and more suitable for computer implementation than the original chain-oriented description and provides also a self-contained proof of correctness. We extend the Pieri homotopies to the quantum Schubert calculus problem of enumerating all polynomial maps of degree q into the Grassmannian of p-planes in Cm+p that meet mp + q ( m + p) given m-planes in general position sampled at mp + q ( m + p) interpolation points. Our approach mirrors existing counting methods for this problem and yields a numerical implementation for the dynamic pole placement problem in the control of linear systems.
引用
收藏
页码:1265 / 1287
页数:23
相关论文
共 50 条
  • [1] Minimum Variance Pole Placement in Uncertain Linear Control Systems
    Ghanbarpourasl, Habib
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2021, 57 (02) : 1242 - 1251
  • [2] Pole placement in a specified trapezoid region for uncertain linear control systems
    Kuo, T. C.
    Huang, Y. J.
    ASCC: 2009 7TH ASIAN CONTROL CONFERENCE, VOLS 1-3, 2009, : 1286 - 1289
  • [3] Pole Placement Approaches for Linear and Fuzzy Systems
    Preitl, S.
    Precup, R. -E.
    Clep, P. A.
    Ursache, I-B.
    Fodor, J.
    Skrjanc, I.
    2008 6TH INTERNATIONAL SYMPOSIUM ON INTELLIGENT SYSTEMS AND INFORMATICS, 2008, : 358 - +
  • [4] Recurrent neural networks for synthesizing linear control systems via pole placement
    Wang, J
    Wu, G
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1995, 26 (12) : 2369 - 2382
  • [5] Robust stable pole-placement adaptive control of linear systems with multiestimation
    de la Sen, M
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 172 (02) : 1145 - 1174
  • [6] Active control of linear vibrating systems for antiresonance assignment with regional pole placement
    Richiedei, Dario
    Tamellin, Iacopo
    JOURNAL OF SOUND AND VIBRATION, 2021, 494
  • [7] APPLICATIONS OF ALGEBRAIC GEOMETRY TO SYSTEMS-THEORY .2. FEEDBACK AND POLE PLACEMENT FOR LINEAR HAMILTONIAN SYSTEMS
    MARTIN, CF
    HERMANN, R
    PROCEEDINGS OF THE IEEE, 1977, 65 (06) : 841 - 848
  • [8] Pattern Preserving Pole Placement and Stabilization for Linear Systems
    Holmes, Connor T.
    Broucke, Mireille E.
    2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 5181 - 5186
  • [9] ON POLE PLACEMENT IN LMI REGION FOR DESCRIPTOR LINEAR SYSTEMS
    Bai, Jianjun
    Su, Hongye
    Wang, Jing
    Shi, Bingxin
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2012, 8 (04): : 2613 - 2624
  • [10] Criterion for arbitrary pole placement of linear generalized systems
    Wang, Jiangshu
    Liu, Feng
    General System and Control System, Vol I, 2007, : 341 - 344