L-SPACES AND THE P-IDEAL DICHOTOMY

被引:4
|
作者
Mildenberger, H. [1 ]
Zdomskyy, L. [1 ]
机构
[1] Univ Vienna, Kurt Godel Res Ctr Math Log, A-1090 Vienna, Austria
关键词
L-spaces; P-ideal dichotomy; special Aronszajn tree; point-finiteness; SETS;
D O I
10.1007/s10474-009-8218-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend a theorem of Todorcevic: Under the assumption (K) (see Definition 1.11), boxed times {any regular space Z with countable tightness such that Z(n) is Lindelof for all n epsilon omega has no L-subspace. We assume p > omega(1) and a weak form of Abraham and Todorcevic's P-ideal dichotomy instead and get the same conclusion. Then we show that p > omega(1) and the dichotomy principle for P-ideals that have at most aleph(1) generators together with boxed times do not imply that every Aronszajn tree is special, and hence do not imply (K). So we really extended the mentioned theorem.
引用
收藏
页码:85 / 97
页数:13
相关论文
共 50 条