Sensory neuron regulation of gastrointestinal inflammation and bacterial host defence

被引:71
|
作者
Lai, N. Y. [1 ]
Mills, K. [1 ]
Chiu, I. M. [1 ]
机构
[1] Harvard Med Sch, Div Immunol, Dept Microbiol & Immunobiol, Boston, MA USA
关键词
gastrointestinal inflammation; host defence; neuro-immunology; pain; sensory neuron; vagus nerve; VASOACTIVE-INTESTINAL-PEPTIDE; GENE-RELATED PEPTIDE; ENTERIC NERVOUS-SYSTEM; PRIMARY AFFERENT NEURONS; SULFATE-INDUCED COLITIS; CYCLASE-ACTIVATING POLYPEPTIDE; NITRIC-OXIDE PRODUCTION; SODIUM-INDUCED COLITIS; ROOT GANGLION NEURONS; ACID-INDUCED COLITIS;
D O I
10.1111/joim.12591
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Sensory neurons in the gastrointestinal tract have multifaceted roles in maintaining homeostasis, detecting danger and initiating protective responses. The gastrointestinal tract is innervated by three types of sensory neurons: dorsal root ganglia, nodose/jugular ganglia and intrinsic primary afferent neurons. Here, we examine how these distinct sensory neurons and their signal transducers participate in regulating gastrointestinal inflammation and host defence. Sensory neurons are equipped with molecular sensors that enable neuronal detection of diverse environmental signals including thermal and mechanical stimuli, inflammatory mediators and tissue damage. Emerging evidence shows that sensory neurons participate in host-microbe interactions. Sensory neurons are able to detect pathogenic and commensal bacteria through specific metabolites, cell-wall components, and toxins. Here, we review recent work on the mechanisms of bacterial detection by distinct subtypes of gut-innervating sensory neurons. Upon activation, sensory neurons communicate to the immune system to modulate tissue inflammation through antidromic signalling and efferent neural circuits. We discuss how this neuro-immune regulation is orchestrated through transient receptor potential ion channels and sensory neuropeptides including substance P, calcitonin gene-related peptide, vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Recent studies also highlight a role for sensory neurons in regulating host defence against enteric bacterial pathogens including Salmonella typhimurium, Citrobacter rodentium and enterotoxigenic Escherichia coli. Understanding how sensory neurons respond to gastrointestinal flora and communicate with immune cells to regulate host defence enhances our knowledge of host physiology and may form the basis for new approaches to treat gastrointestinal diseases.
引用
收藏
页码:5 / 23
页数:19
相关论文
共 50 条
  • [1] Iron homeostasis in host defence and inflammation
    Tomas Ganz
    Elizabeta Nemeth
    Nature Reviews Immunology, 2015, 15 : 500 - 510
  • [2] Iron homeostasis in host defence and inflammation
    Ganz, Tomas
    Nemeth, Elizabeta
    NATURE REVIEWS IMMUNOLOGY, 2015, 15 (08) : 500 - 510
  • [3] Defensins and innate host defence of the gastrointestinal tract
    Bevins, CL
    Martin-Porter, E
    Ganz, T
    GUT, 1999, 45 (06) : 911 - 915
  • [4] TRANSGANGLIONIC REGULATION OF THE PRIMARY SENSORY NEURON
    CSILLIK, B
    KNYIHARCSILLIK, E
    ACTA PHYSIOLOGICA HUNGARICA, 1985, 66 (3-4) : 239 - 239
  • [5] TRANSGANGLIONIC REGULATION OF THE PRIMARY SENSORY NEURON
    CSILLIK, B
    ACTA PHYSIOLOGICA HUNGARICA, 1987, 69 (3-4) : 355 - 361
  • [6] Antimicrobial regulation by host defence peptides
    Ryan, L. E.
    Lamarre, B.
    Ravi, J.
    Ryadnov, M. G.
    JOURNAL OF PEPTIDE SCIENCE, 2012, 18 : S58 - S58
  • [7] Pyroptosis in host defence against bacterial infection
    Brokatzky, Dominik
    Mostowy, Serge
    DISEASE MODELS & MECHANISMS, 2022, 15 (07)
  • [8] Novel Regulation of Sensory Neuron Sodium Current
    Ribera, Angeles B.
    JOURNAL OF GENERAL PHYSIOLOGY, 2012, 140 (01): : 10A - 10A
  • [9] Mechanisms of host protection and inflammation in the gastrointestinal tract
    Mahida, YR
    JOURNAL OF THE ROYAL COLLEGE OF PHYSICIANS OF LONDON, 1997, 31 (05): : 493 - 497
  • [10] Sensory neuron detection of bacteria and modulation of immune host defenses
    Baral, Pankaj
    Mills, Kimbria
    Chiu, Isaac M.
    CHEMICAL SENSES, 2018, 43 (04) : E20 - E20