Squamous cell carcinomas of head and neck (HNSCC) are a result of multiple genetic and epigenetic alterations. Epigenetic inactivation Of tumor suppressor genes is an important event in head and neck carcinogenesis. Here we analyzed the promoter methylation of 15 genes (RASSF1A, p16, MGMT, DAPK, RAR beta, MLH1, CDH1, GSTP1, RASSF2, RASSF4, RASSF5, MST1, MST2, LATS1, LATS2) in 54 HNSCC and in matching 23 normal tissues. Methylation of these tumor-related genes (TRG) was significantly more frequent in HNSCC (42%) compared to normal samples (23%; p<0.05). Particularly, methylation of p16 (60%), MGMT (53%), DAPK (67%), RAR beta (75%), MLH1 (69%), CDH1 (43%), RASSF5 and MST1 (96%) was often found in HNSCC. Methylation of RASSF1A (18%), GSTP1 (4%), RASSF4 (13%), MST2 (4%), LATS1 (24%) and LATS2 (8%) was less frequently detected. A trend of increased TRG methylation in more advanced tumor stages and less differentiated HNSCC was observed. Methylation of p16 was significantly higher in poorly differentiated HNSCC (p=0.037) and RASSF5 methylation occurred preferentially in advanced tumor stages (p<0.05). Methylation of RASSF4 was higher in patients with recurrent HNSCC (23%) than patients without relapse (0%; p=0.033). Methylation of TRG in head and neck cancer cell lines was observed at similar frequency as in primary HNSCC. In summary, frequent hypermethylation of tumor-related genes in HNSCC was detected and this epigenetic silencing event may have an essential role in head and neck carcinogenesis.