Electronic structure and lattice dynamics of Li2Ni(WO4)2

被引:1
|
作者
Chung, Yun Chen [1 ]
Karna, Sunil K. [2 ]
Chou, Fan-Cheng [2 ]
Liu, Hsiang-Lin [1 ]
机构
[1] Natl Taiwan Normal Univ, Dept Phys, Taipei 11677, Taiwan
[2] Natl Taiwan Univ, Ctr Condensed Matter Sci, Taipei 10617, Taiwan
关键词
Strongly correlated electron system; Optical spectroscopy; Spin-phonon coupling; TUNGSTATES LI2MII(WO4)(2) M; RAMAN; CO; NI;
D O I
10.1016/j.cjph.2019.05.027
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We combined spectroscopic ellipsometry and Raman scattering measurements to explore the electronic structure and lattice dynamics in Li2Ni(WO4)(2). The optical absorption spectrum of Li2Ni(WO4)(2) measured at room temperature presents a direct optical band gap at 2.25 eV and two bands near 5.2 and 6.0 eV, which are attributed to charge-transfer transitions from oxygen 2p states to nickel 3d or tungsten 5p states. The Raman scattering spectrum of Li2Ni(WO4)(2) measured at room temperature presents seventeen phonon modes at approximately 112, 143, 193, 222, 267, 283, 312, 352, 387, 418, 451, 476, 554, 617, 754, 792, and 914 cm(-1). When the temperature is decreased to 20 K, the frequency, linewidth, and normalized intensity of all phonon modes exhibited almost no temperature dependence. Upon cooling across 13 K, which is the antiferromagnetic phase transition temperature, the oxygen octahedra stretching mode at 914 cm(-1) exhibited a softening and an increase in intensity, thus suggesting a coupling between the magnetic and lattice degrees of freedom. The spin-phonon coupling constant was estimated to be 0.94 mRy/angstrom(2), indicating a weak spin-phonon interaction in Li2Ni(WO4)(2).
引用
收藏
页码:473 / 480
页数:8
相关论文
共 50 条
  • [1] Antiferromagnetic spin structure and negative thermal expansion of Li2Ni(WO4)2
    Karna, Sunil K.
    Wang, C. W.
    Sankar, R.
    Avdeev, M.
    Singh, A.
    Muthuselvam, I. Panneer
    Singh, V. N.
    Guo, G. Y.
    Chou, F. C.
    PHYSICAL REVIEW B, 2015, 92 (01)
  • [2] Luminescence and electrical studies of Li2Ni(WO4)2 microcrystals
    Shruthi, D. L.
    Kumar, G. N. Anil
    Reddy, A. Jagannatha
    MATERIALS TODAY-PROCEEDINGS, 2021, 46 : 5772 - 5776
  • [3] Successive spin orderings of tungstate-bridged Li2Ni(WO4)2 of spin 1
    Muthuselvam, I. Panneer
    Sankar, R.
    Ushakov, A. V.
    Chen, W. T.
    Rao, G. Narsinga
    Streltsov, Sergey V.
    Karna, Sunil K.
    Zhao, L.
    Wu, M-K
    Chou, F. C.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2015, 27 (45)
  • [4] Li2Ni(WO4)2/C: A potential tungstate anode material for lithium ion batteries
    Ge, Xiuli
    Li, Ning
    Yu, Xuefang
    Cheng, Jianbo
    Chang, Siliang
    Zhao, Qian
    Cui, Hongtao
    Feng, Kai
    Liu, Shanshan
    Yang, Xin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 888
  • [5] Ferromagnetic nature in low-dimensional S=1 antiferromagnetic Li2Ni(WO4)2 nanoparticles
    Muthuselvam, I. Panneer
    Sankar, R.
    Rao, G. Narsinga
    Karna, Sunil K.
    Chou, F. C.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2018, 449 : 83 - 87
  • [6] FEATURES OF CRYSTAL STRUCTURE OF LI2FE WO4[2]
    KLEVTSOVA, RF
    BORISOV, SV
    SOVIET PHYSICS CRYSTALLOGRAPHY, USSR, 1970, 14 (04): : 515 - +
  • [7] Vibrational study and lattice dynamics of disordered NaBi(WO4)2
    Maczka, M
    Kokanyan, EP
    Hanuza, J
    JOURNAL OF RAMAN SPECTROSCOPY, 2005, 36 (01) : 33 - 38
  • [8] Crystal structure of dilithium nickel disulfate, Li2Ni(SO4)2
    Isasi, J
    Jaulmes, S
    Elfakir, A
    Quarton, M
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE-NEW CRYSTAL STRUCTURES, 2001, 216 (03): : 331 - 332
  • [9] LI2WO4-YB2(WO4)3 SYSTEM
    EVDOKIMO.AA
    TRUNOV, VK
    ZHURNAL NEORGANICHESKOI KHIMII, 1973, 18 (11): : 3157 - 3157
  • [10] KGd(WO4)(2)-KNd(WO4)(2) and RbGd(WO4)(2)-RbNd(WO4)(2) phase diagrams and growth of Nd-doped KGd(WO4)(2) and RbGd(WO4)(2) single crystals
    Pavlyuk, AA
    Yudanova, LI
    Potapova, OG
    INORGANIC MATERIALS, 1997, 33 (01) : 64 - 67