HYPERSPECTRAL TARGET DETECTION USING NEURAL NETWORKS

被引:2
|
作者
Lo, Edisanter [1 ]
Ientilucci, Emmett J. [2 ]
机构
[1] Susquehanna Univ, Dept Math & Comp Sci, Selinsgrove, PA 17870 USA
[2] Rochester Inst Technol, Ctr Imaging Sci, Rochester, NY 14623 USA
关键词
neural network; target detection; hyperspectral imaging; remote sensing;
D O I
10.1109/IGARSS46834.2022.9883130
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Artificial neural networks are designed for classic classification problem, which is different than our goal of target detection. The objective of this paper is to develop an algorithm, based on a one-layer neural network, and assess its performance and utility as a target detection algorithm to detect a subpixel target in a hyperspectral image. The weights are estimated by maximizing the likelihood function of the output variable and are solved numerically using the gradient descent method with a variable step size based on the Lipschitz's constant for the objective function. Experimental results using hyperspectral data are presented so as to assess the performance of the proposed algorithm. Results demonstrated that a single-layer neural network, implemented using the gradient descent method with a variable step size, can detect subpixel objects in hyperspectral imagery.
引用
收藏
页码:32 / 35
页数:4
相关论文
共 50 条
  • [1] Paired neural networks for hyperspectral target detection
    Anderson, Dylan Z.
    Zollweg, Joshua D.
    Smith, Braden J.
    APPLICATIONS OF MACHINE LEARNING, 2019, 11139
  • [2] Target Detection Using Artificial Neural Networks on LWIR Hyperspectral Imagery
    Martin, Jacob A.
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XXIV, 2018, 10644
  • [3] Multi-Scenario Target Detection using Neural Networks on Hyperspectral Imagery
    Chilakamarri, Jayasimha
    Nidamanuri, Rama Rao
    Murugan, Palani
    2023 INTERNATIONAL CONFERENCE ON MACHINE INTELLIGENCE FOR GEOANALYTICS AND REMOTE SENSING, MIGARS, 2023, : 53 - 56
  • [4] Target Detection in Hyperspectral Images Using Support Vector Neural Networks Algorithm
    Lokman, Gurcan
    Yilmaz, Guray
    2015 23RD SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2015, : 1421 - 1424
  • [5] Target Detection of Hyperspectral Image Based on Convolutional Neural Networks
    Liu, Xuefeng
    Wang, Congcong
    Sun, Qiaoqiao
    Fu, Min
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 9255 - 9260
  • [6] Spatial Anomaly Detection in Hyperspectral Imaging Using Optical Neural Networks
    Liu, Lingfeng
    Ni, Dong
    Dai, Liankui
    IEEE INTELLIGENT SYSTEMS, 2023, 38 (02) : 64 - 72
  • [7] Robust Signature-Based Hyperspectral Target Detection Using Dual Networks
    Gao, Yanlong
    Feng, Yan
    Yu, Xumin
    Mei, Shaohui
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [8] Robust Signature-Based Hyperspectral Target Detection Using Dual Networks
    Gao, Yanlong
    Feng, Yan
    Yu, Xumin
    Mei, Shaohui
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [9] Moving Target Detection and Classification Using Spiking Neural Networks
    Cai, Rongtai
    Wu, Qingxiang
    Wang, Ping
    Sun, Honghai
    Wang, Zichen
    INTELLIGENT SCIENCE AND INTELLIGENT DATA ENGINEERING, ISCIDE 2011, 2012, 7202 : 210 - 217
  • [10] Maritime Radar Target Detection Using Convolutional Neural Networks
    Williams, Jerome
    Rosenberg, Luke
    Stamatescu, Victor
    Tri-Tan Cao
    2022 IEEE RADAR CONFERENCE (RADARCONF'22), 2022,