Bootstrap-based bias correction and inference for dynamic panels with fixed effects

被引:65
|
作者
De Vos, Ignace [1 ]
Everaert, Gerdie [1 ]
Ruyssen, Ilse [1 ]
机构
[1] Univ Ghent, SHERPPA, B-9000 Ghent, Belgium
来源
STATA JOURNAL | 2015年 / 15卷 / 04期
关键词
st0396; xtbcfe; bootstrap-based bias correction; dynamic panel data; unbalanced; higher order; heteroskedasticity; cross-sectional dependence; Monte Carlo; labor demand; bootstrap; DATA MODELS; ESTIMATOR;
D O I
10.1177/1536867X1501500404
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
In this article, we describe a new command, xtbcfe, that performs the iterative bootstrap-based bias correction for the fixed-effects estimator in dynamic panels proposed by Everaert and Pozzi (2007, Journal of Economic Dynamics and Control 31: 1160-1184). We first simplify the core of their algorithm by using the invariance principle and subsequently extend it to allow for unbalanced and higher-order dynamic panels. We implement various bootstrap error resampling schemes to account for general heteroskedasticity and contemporaneous cross-sectional dependence. Inference can be performed using a bootstrapped variance covariance matrix or percentile intervals. Monte Carlo simulations show that the simplification of the original algorithm results in a further bias reduction for very small T. The Monte Carlo results also support the bootstrap-based bias correction in higher-order dynamic panels and panels with cross-sectional dependence. We illustrate the command with an empirical example estimating a dynamic labor demand function.
引用
收藏
页码:986 / 1018
页数:33
相关论文
共 50 条
  • [1] Bootstrap-based bias correction for dynamic panels
    Everaert, Gerdle
    Pozzi, Lorenzo
    [J]. JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2007, 31 (04): : 1160 - 1184
  • [2] Bootstrap-Based Inference for the Effects of Changes in Epidemiologic Design and Analysis
    Brookhart, M. Alan
    Cole, Stephen R.
    Sturmer, Til
    [J]. PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2016, 25 : 134 - 135
  • [3] Bootstrap-based testing inference in beta regressions
    Lima, Fabio P.
    Cribari-Neto, Francisco
    [J]. BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2020, 34 (01) : 18 - 34
  • [4] Bootstrap-Based Inference for Cube Root Asymptotics
    Cattaneo, Matias D.
    Jansson, Michael
    Nagasawa, Kenichi
    [J]. ECONOMETRICA, 2020, 88 (05) : 2203 - 2219
  • [5] Bootstrap-based statistical inference for linear mixed effects under misspecifications
    Reluga, Katarzyna
    Lombardia, Maria-Jose
    Sperlich, Stefan
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2024, 199
  • [6] Bootstrap-based improvements for inference with clustered errors
    Cameron, A. Colin
    Gelbach, Jonah B.
    Miller, Douglas L.
    [J]. REVIEW OF ECONOMICS AND STATISTICS, 2008, 90 (03) : 414 - 427
  • [7] BIAS CORRECTION ESTIMATOR FOR A DYNAMIC PANEL DATA MODEL WITH FIXED EFFECTS USING AN ITERATED BOOTSTRAP
    Yu, Gang
    Gao, Wei
    Shi, Ning-Zhong
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2011, 40 (01): : 105 - 114
  • [8] Reworking wild bootstrap-based inference for clustered errors
    Webb, Matthew D. D.
    [J]. CANADIAN JOURNAL OF ECONOMICS-REVUE CANADIENNE D ECONOMIQUE, 2023, 56 (03): : 839 - 858
  • [9] Wild Bootstrap-Based Bias Correction for Spatial Quantile Panel Data Models with Varying Coefficients
    Dai, Xiaowen
    Huang, Shidan
    Jin, Libin
    Tian, Maozai
    [J]. MATHEMATICS, 2023, 11 (09)
  • [10] Bootstrap-based bias corrections for INAR count time series
    Weiss, C. H.
    Jentsch, C.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2019, 89 (07) : 1248 - 1264