Computational design of cobalt-free mixed proton-electron conductors for solid oxide electrochemical cells

被引:61
|
作者
Munoz-Garcia, Ana Belen [1 ]
Tuccillo, Mariarosaria [1 ]
Pavone, Michele [1 ]
机构
[1] Univ Naples Federico II, Dept Chem Sci, Via Cintia 21, I-80126 Naples, Italy
关键词
OXYGEN REDUCTION; DOPED BAZRO3; FUEL-CELLS; 1ST-PRINCIPLES; SR2FE1.5MO0.5O6-DELTA; TRANSPORT; VACANCIES; INSIGHTS; EVOLUTION; SURFACES;
D O I
10.1039/c7ta00338b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Proton-conducting solid-oxide electrolyzer and fuel cells (PC-SOECs/FCs) represent viable, intermediate-temperature green technologies for H-2 production and conversion. While PC ceramics have been extensively investigated as electrolytes for PC-SOECs/FCs, the development of corresponding singlephase electrode components has been hindered by difficulties in finding efficient mixed proton-electron conductors (MPECs), with also effective catalytic activity toward oxygen reduction and evolution reactions (ORR/OER). To address this challenge, we applied first-principles methods (PBE+U) to design new perovskite-oxide MPEC electrodes based on the known BaZrO3 PC ceramic. Our strategy has been to modify the parent material by substituting Zr with earth abundant transition metals, namely Mn and Fe. We found Zr : Mn and Zr : Fe ratios of 0.75 : 0.25 to be sufficient to obtain electronic structural features that can enable electric conductivity. We also investigated other relevant processes for MPEC-based electrodes: hydration, proton migration, and ORR/OER electrocatalysis. From calculations of key descriptors associated with these processes, we found that Zr substitution with Mn or Fe delivers in both cases promising PC-SOEC/FC electrodes. Moreover, our first-principles results highlight the specific qualities of Mn and Fe: the first provides better electronic features and electrocatalytic activities, whereas the latter allows for better hydration and proton migration. In perspective, our findings present clear indications for the experimental implementation and test of new low-cost materials for solid-oxide electrochemical cells.
引用
收藏
页码:11825 / 11833
页数:9
相关论文
共 50 条
  • [1] Cobalt-free nanofiber cathodes for proton conducting solid oxide fuel cells
    Tang, Haidi
    Jin, Zongzi
    Wu, Yusen
    Liu, Wei
    Bi, Lei
    ELECTROCHEMISTRY COMMUNICATIONS, 2019, 100 : 108 - 112
  • [2] Insights into Hydration Enthalpies of Mixed Proton-Electron Conductors
    Jin, Zongzi
    Shi, Nai
    Peng, Ranran
    Wang, Zhenbin
    Wang, Chengwei
    Lu, Yalin
    Liu, Wei
    JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (31): : 13025 - 13031
  • [3] A novel cobalt-free cathode material for proton-conducting solid oxide fuel cells
    Zhang, Cuijuan
    Zhao, Hailei
    JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (35) : 18387 - 18394
  • [4] Cobalt-Free Perovskite Cathodes for Solid Oxide Fuel Cells
    Hashim, Siti Salwa
    Liang, Fengli
    Zhou, Wei
    Sunarso, Jaka
    CHEMELECTROCHEM, 2019, 6 (14) : 3549 - 3569
  • [6] Short review on cobalt-free cathodes for solid oxide fuel cells
    Baharuddin, Nurul Akidah
    Muchtar, Andanastuti
    Somalu, Mahendra Rao
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (14) : 9149 - 9155
  • [7] Mixed proton-electron-oxide ion triple conducting manganite as an efficient cobalt-free cathode for protonic ceramic fuel cells
    Wang, Ning
    Hinokuma, Satoshi
    Ina, Toshiaki
    Zhu, Chunyu
    Habazaki, Hiroki
    Aoki, Yoshitaka
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (21) : 11043 - 11055
  • [8] Cobalt-Free Double Perovskite Oxide as a Promising Cathode for Solid Oxide Fuel Cells
    Zhang, Binze
    Zhang, Shaowei
    Han, Hairui
    Tang, Kaibin
    Xia, Changrong
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (06) : 8253 - 8262
  • [9] A real proton-conductive, robust, and cobalt-free cathode for proton-conducting solid oxide fuel cells with exceptional performance
    Yin, Yanru
    Xiao, Dongdong
    Wu, Shuai
    Da'as, Eman Husni
    Gu, Yueyuan
    Bi, Lei
    SUSMAT, 2023, 3 (05): : 697 - 708
  • [10] Mixed Proton-Electron Conducting Chromite Electrocatalysts as Anode Materials for LWO-Based Solid Oxide Fuel Cells
    Solis, Cecilia
    Vert, Vicente B.
    Balaguer, Maria
    Escolastico, Sonia
    Roitsch, Stefan
    Serra, Jose M.
    CHEMSUSCHEM, 2012, 5 (11) : 2155 - 2158