Carleson measures and vector-valued BMO martingales

被引:13
|
作者
Jiao, Yong [1 ,2 ]
机构
[1] Univ Franche Comte, Math Lab, F-25030 Besancon, France
[2] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Carleson measures; BMO martingales; Uniformly convex (smooth) spaces; UNIFORMLY CONVEX-SPACES; TRANSFORMS;
D O I
10.1007/s00440-008-0173-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the relationship between vector-valued BMO martingales and Carleson measures. Let (Omega, F, P) be a probability space and 2 <= q < infinity. Let X be a Banach space. Given a stopping time tau, let <(tau)over cap> denote the tent over tau: (tau) over cap = {(w, k) is an element of Omega x N : tau(w) <= k, tau(w) < infinity}. We prove that there exists a positive constant c such that sup(tau) 1/P(tau <infinity)integral((tau) over cap) parallel to dfk parallel to(q)dp circle times dm <= c(q) parallel to f parallel to(q)(B M O(X)) for any finite martingale with values in X iff X admits an equivalent norm which is q-uniformly convex. The validity of the converse inequality is equivalent to the existence of an equivalent p-uniformly smooth norm. And then we also give a characterization of UMD Banach lattices.
引用
收藏
页码:421 / 434
页数:14
相关论文
共 50 条