Background The small-molecule nutlin-3 was found to be an effective therapeutic compound and p53 activator, and acts as a murine double minute 2 antagonist, although these findings need to be clinically confirmed. The essential components of the bone marrow include mesenchymal stem cells (MSCs), which play a key role in protecting, regenerating, and proliferating hematopoietic stem cells (HSCs). This feature is vital for HSC after exposure to myelotoxic anticancer agents; nevertheless, the effects of nutlin-3 on MSCs remain to be disclosed. The present research study was conducted to examine the antiproliferative and proapoptotic effectiveness of nutlin-3 in bone marrow MSCs (BMSCs). Materials and Methods Human-derived BMSCs were cultured for different durations, that is, 24, 48, and 72 hours, and treated using various concentrations of nutlin-3, including 5, 10, 25, 50, and 100 mu M. To investigate the effect of nutlin-3 on the apoptosis, cell vitality and proliferation in BMSCs, the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), thiazolyl blue tetrazolium bromide, propidium iodide (PI) and annexin V assay, as well as real-time polymerase chain reaction, were used. Results BMSCs viability significantly decreased (P < .05) in the cells treated at concentrations of 50 and 100 mu M for 24 hours and concentrations of 25, 50, and 100 mu M for 48 hours and at all concentrations for 72 hours. The apoptosis of BMSCs (TUNEL positive) was significantly more visible at concentrations of 25 and 50 mu M compared with that in the controls (P < .05), while this increased through dose-dependent processes. Annexin V/PI staining revealed negligible dose-dependent increases in all the apoptotic cells after 72 hours of incubation, and this apoptosis elevation was significant at 25 and 50 mu M (P < .05). Conclusion Resistance to nutlin-3 was observed in human bone marrow-derived MSCs; nevertheless, further clinical data are required to be obtained with long-duration exposure to confirm the present findings.