Steady state electrical design, power performance and economic modeling of offshore wind farms

被引:1
|
作者
Damen, M. [1 ]
Bauer, P.
de Haan, S. W. H.
Pierik, J. T. G.
机构
[1] Delft Univ Technol, NL-2600 AA Delft, Netherlands
[2] Netherlands Energy Res Fdn, ECN, NL-1755 ZG Petten, Netherlands
关键词
offshore wind energy; electrical models; economic models; power performance;
D O I
10.1080/09398368.2006.11463635
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A load flow model has been developed for the evaluation of thirteen different electrical architectures for large offshore wind farms. In a case study, these architectures have been evaluated for two wind farm sizes (100 and 500 MW) and two distances to shore (20 and 60 km). The case study has shown that systems Cl (string layout) and C2 (star layout), have the lowest contribution of the electrical system to the price per kWh (Partial Levelized Production Cost PLPC). C1 and C2 system prices are 19.7 and 24.9 MEuro (100 MW, 20 km), 36.9 and 42.1 MEuro (100 MW, 60 km), 91.7 and 109.5 MEuro (500 MW, 20 km) and 132.9, 150.7 MEuro (500 MW, 60 km). For comparison another case study with prolonged life-time and predicted price decrease of power electronic components is shown too.
引用
收藏
页码:44 / 49
页数:6
相关论文
共 50 条
  • [1] Design of electrical layout of offshore wind farms
    Dhali, Shirshak K.
    Nandigam, Mahidhar
    [J]. JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2017, 9 (04)
  • [2] Wind speed simulation in wind farms for steady-state security assessment of electrical power systems
    Universidade de Vigo, Vigo, Spain
    [J]. IEEE Trans Energy Convers, 4 (1582-1587):
  • [3] Wind speed simulation in wind farms for steady-state security assessment of electrical power systems
    Feijóo, AE
    Cidrás, J
    Dornelas, JLG
    [J]. IEEE TRANSACTIONS ON ENERGY CONVERSION, 1999, 14 (04) : 1582 - 1588
  • [4] Economic power control for offshore wind farms with loop connection cables
    Scholz, Janine
    Wiebe, Eduard
    Scheffer, Volker
    Becker, Christian
    [J]. AT-AUTOMATISIERUNGSTECHNIK, 2020, 68 (09) : 765 - 780
  • [5] Optimization Modeling for Offshore Wind Farms
    Hamzah, Siti Khadijah
    Lacey, Gill
    Pillai, Gobind
    [J]. 2020 55TH INTERNATIONAL UNIVERSITIES POWER ENGINEERING CONFERENCE (UPEC), 2020,
  • [6] Modeling and Comparison Analysis of Outgoing Power Cables for Offshore Wind Farms
    Bo, Xin
    Ma, Hongyuan
    Zong, Xuanjun
    Lu, Siyao
    Gao, Bingtuan
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO), 2015, : 917 - 922
  • [7] Electrical stability of large, offshore wind farms
    Holdsworth, L
    Jenkins, N
    Strbac, G
    [J]. SEVENTH INTERNATIONAL CONFERENCE ON AC-DC POWER TRANMISSION, 2001, (485): : 156 - 161
  • [8] Methodology for the Design of Offshore Wind Farms
    Esteban, M. D.
    Lopez-Gutierrez, J. S.
    Diez, J. J.
    Negro, V.
    [J]. JOURNAL OF COASTAL RESEARCH, 2011, : 496 - 500
  • [9] Discussion of electrical and thermal aspects of offshore wind farms’ power cables reliability
    Gulski, E.
    Anders, G.J.
    Jongen, R.A.
    Parciak, J.
    Siemiński, J.
    Piesowicz, E.
    Paszkiewicz, S.
    Irska, I.
    [J]. Renewable and Sustainable Energy Reviews, 2021, 151
  • [10] Discussion of electrical and thermal aspects of offshore wind farms' power cables reliability
    Gulski, E.
    Anders, G. J.
    Jongen, R. A.
    Parciak, J.
    Sieminski, J.
    Piesowicz, E.
    Paszkiewicz, S.
    Irska, I.
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2021, 151