Security of the decoy state method for quantum key distribution

被引:15
|
作者
Trushechkin, A. S. [1 ,2 ]
Kiktenko, E. O. [1 ,2 ,3 ,4 ]
Kronberg, D. A. [1 ,3 ,4 ]
Fedorov, A. K. [3 ,4 ]
机构
[1] Russian Acad Sci, Steklov Math Inst, Ul Gubkina 8, Moscow 119991, Russia
[2] Natl Univ Sci & Technol MISIS, Competence Ctr Quantum Commun, Natl Technol Initiat, Leninskii Prosp 4, Moscow 119049, Russia
[3] Int Ctr Quantum Opt & Quantum Technol, Russian Quantum Ctr, Ul Novaya 100, Skolkovo 143025, Moscow Region, Russia
[4] Natl Res Univ, Moscow Inst Phys & Technol, Inst Skii Per 9, Dolgoprudnyi 141701, Moscow Region, Russia
基金
俄罗斯科学基金会;
关键词
quantum cryptography; quantum key distribution; BB84; decoy states; CRYPTOGRAPHY; AUTHENTICATION; INFORMATION; COMPUTERS; PROOF;
D O I
10.3367/UFNe.2020.11.038882
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum cryptography or, more precisely, quantum key distribution (QKD), is one of the advanced areas in the field of quantum technologies. The confidentiality of keys distributed with the use of QKD protocols is guaranteed by the fundamental laws of quantum mechanics. This paper is devoted to the decoy state method, a countermeasure against vulnerabilities caused by the use of coherent states of light for QKD protocols whose security is proved under the assumption of single-photon states. We give a formal security proof of the decoy state method against all possible attacks. We compare two widely known attacks on multiphoton pulses: photon-number splitting and beam splitting. Finally, we discuss the equivalence of polarization and phase coding.
引用
收藏
页码:88 / 102
页数:15
相关论文
共 50 条
  • [1] Tight security bounds for decoy-state quantum key distribution
    Hua-Lei Yin
    Min-Gang Zhou
    Jie Gu
    Yuan-Mei Xie
    Yu-Shuo Lu
    Zeng-Bing Chen
    [J]. Scientific Reports, 10
  • [2] Security Bounds for Efficient Decoy-State Quantum Key Distribution
    Lucamarini, Marco
    Dynes, James F.
    Froehlich, Bernd
    Yuan, Zhiliang
    Shields, Andrew J.
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2015, 21 (03) : 1 - 8
  • [3] Efficient decoy-state quantum key distribution with quantified security
    Lucamarini, M.
    Patel, K. A.
    Dynes, J. F.
    Froehlich, B.
    Sharpe, A. W.
    Dixon, A. R.
    Yuan, Z. L.
    Penty, R. V.
    Shields, A. J.
    [J]. OPTICS EXPRESS, 2013, 21 (21): : 24550 - 24565
  • [4] Tight security bounds for decoy-state quantum key distribution
    Yin, Hua-Lei
    Zhou, Min-Gang
    Gu, Jie
    Xie, Yuan-Mei
    Lu, Yu-Shuo
    Chen, Zeng-Bing
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [5] DECOY STATE QUANTUM KEY DISTRIBUTION
    Ali, Sellami
    Saharudin, Suhairi
    Wahiddin, M. R. B.
    [J]. IIUM ENGINEERING JOURNAL, 2009, 10 (02): : 81 - 86
  • [6] Decoy state quantum key distribution
    Lo, HK
    [J]. INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2005, 3 : 143 - 143
  • [7] Decoy state quantum key distribution
    Lo, HK
    Ma, XF
    Chen, K
    [J]. PHYSICAL REVIEW LETTERS, 2005, 94 (23)
  • [8] Experimental decoy state method for secure quantum key distribution
    Tomita, Akihisa
    [J]. 2007 IEEE LEOS ANNUAL MEETING CONFERENCE PROCEEDINGS, VOLS 1 AND 2, 2007, : 478 - 479
  • [9] Security of Decoy-State Quantum Key Distribution with Correlated Intensity Fluctuations
    Sixto, Xoel
    Zapatero, Victor
    Curty, Marcos
    [J]. PHYSICAL REVIEW APPLIED, 2022, 18 (04)
  • [10] Concise security bounds for practical decoy-state quantum key distribution
    Lim, Charles Ci Wen
    Curty, Marcos
    Walenta, Nino
    Xu, Feihu
    Zbinden, Hugo
    [J]. PHYSICAL REVIEW A, 2014, 89 (02):