A Stern-type congruence for the Schroder numbers

被引:4
|
作者
Cao, Hui-Qin [1 ]
Pan, Hao [2 ]
机构
[1] Nanjing Audit Univ, Dept Appl Math, Nanjing 211815, Jiangsu, Peoples R China
[2] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Congruence; Schroder number; MOTZKIN NUMBERS; MODULO POWERS; CATALAN;
D O I
10.1016/j.disc.2016.11.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Schroder number S, counts the number of the lattice paths from (0, 0) to (n, n), containing no point above the line y = x and using only steps (1, 0), (0, 1) and (1, 1). We prove that Sn+2 alpha+1 equivalent to S-n + 2(alpha+1) (mod 2(alpha+2)), where n >= 1 and alpha >= 1. (C) 2016 Published by Elsevier B.V.
引用
收藏
页码:708 / 712
页数:5
相关论文
共 50 条
  • [1] On Delannoy numbers and Schroder numbers
    Sun, Zhi-Wei
    JOURNAL OF NUMBER THEORY, 2011, 131 (12) : 2387 - 2397
  • [2] AN EXTENSION OF STERN'S CONGRUENCE
    Sun, Zhi-Hong
    Wang, Lin-Lin
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2013, 9 (02) : 413 - 419
  • [3] A supercongruence involving Delannoy numbers and Schroder numbers
    Liu, Ji-Cai
    JOURNAL OF NUMBER THEORY, 2016, 168 : 117 - 127
  • [4] Some congruences on Delannoy numbers and Schroder numbers
    Liu, Ji-Cai
    Li, Long
    Wang, Su-Dan
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2018, 14 (07) : 2035 - 2041
  • [5] FOURTH PROBLEM AND SCHRODER NUMBERS
    COMTET, L
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1970, 271 (19): : 913 - &
  • [6] Generalized Small Schroder numbers
    Huh, JiSun
    Park, SeungKyung
    ELECTRONIC JOURNAL OF COMBINATORICS, 2015, 22 (03):
  • [7] SCHRODER NUMBERS DIVISIBLE BY 3
    SCHOEN, C
    RANALDI, P
    AMERICAN MATHEMATICAL MONTHLY, 1991, 98 (04): : 368 - 368
  • [8] Arithmetic properties of Delannoy numbers and Schroder numbers
    Sun, Zhi-Wei
    JOURNAL OF NUMBER THEORY, 2018, 183 : 146 - 171
  • [9] The m-Schroder paths and m-Schroder numbers
    Yang, Sheng-Liang
    Jiang, Mei-yang
    DISCRETE MATHEMATICS, 2021, 344 (02)
  • [10] SOME PROPERTIES OF THE SCHRODER NUMBERS
    Qi, Feng
    Shi, Xiao-Ting
    Guo, Bai-Ni
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2016, 47 (04): : 717 - 732