Suppressing antiferromagnetic coupling in rare-earth free ferromagnetic MnBi-Cu permanent magnet

被引:7
|
作者
Choi, Minyeong [1 ]
Hong, Yang-Ki [1 ]
Won, Hoyun [1 ]
Mankey, Gary J. [2 ]
Yeo, Chang-Dong [3 ]
Lee, Woncheol [1 ,4 ]
Jung, Myung-Hwa [5 ]
Lee, Taegyu [6 ]
Lee, Jong-Kook [6 ]
机构
[1] Univ Alabama, Dept Elect & Comp Engn, Tuscaloosa, AL 35487 USA
[2] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA
[3] Texas Tech Univ, Dept Mech Engn, Lubbock, TX 79409 USA
[4] Samsung Electromech Co Ltd, Suwon, South Korea
[5] Sogang Univ, Dept Phys, Seoul, South Korea
[6] Hyundai Motor Co, Inst Fundamental & Adv Technol IFAT, Uiwang Si, Gyeonggi Do, South Korea
基金
美国国家科学基金会;
关键词
Diffusion;
D O I
10.1063/5.0040464
中图分类号
O59 [应用物理学];
学科分类号
摘要
Rare-earth free, ferromagnetic MnBi shows a positive temperature coefficient of coercivity from room temperature to 400K and energy product (BH)(max) of 17.7MGOe at 300K. However, MnBi undergoes a first-order structural phase transformation from a ferromagnetic low-temperature phase (LTP) to a paramagnetic high-temperature phase at 613K below the Curie temperature (T-c) of 716K. The transformation is attributed to Mn diffusion into the interstitial site of LTP MnBi unit cell. Interstitial Mn antiferromagnetically couples with the Mn at lattice 2a site, lowering the magnetization. Cu-occupied bipyramidal sites are investigated as a possible means to suppress Mn diffusion into the bipyramidal sites using first-principles calculations based on the density functional theory. Saturation magnetization, magnetocrystalline anisotropy constant (K), and T-c of (Mn0.5Bi0.5)(100-x)Cu-x (x=0-33) are reported. The magnetocrystalline anisotropy changes to the out-of-plane direction (x=13) from the in-plane direction (x=0.0). T-c decreases gradually to 578K at x=33 from 716K at x=0.0. The calculations show a slightly lower (BH)(max) of 15.6MGOe while it is expected that Cu-occupied interstitial sites will significantly suppress Mn diffusion and raise the temperature of the phase transformation.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] RARE-EARTH PERMANENT-MAGNET
    SHIMODA, T
    TETSU TO HAGANE-JOURNAL OF THE IRON AND STEEL INSTITUTE OF JAPAN, 1985, 71 (10): : 1269 - 1275
  • [2] Trade Study for Rare-Earth-Free Interior Permanent Magnet Synchronous Machine Using MnBi Permanent Magnets
    Brody, Ryan
    Ghosh, M. K.
    Macias, Cuauhtemoc
    Sherman, Andrew
    Ohodnicki, Paul
    Talaat, Ahmed
    Cui, Jun
    Grainger, Brandon
    2022 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 2022,
  • [3] Trade Study for Rare-Earth-Free Interior Permanent Magnet Synchronous Machine Using MnBi Permanent Magnets
    Brody, Ryan M.
    Ohodnicki, Paul R.
    Ghosh, Mohendro K.
    Macias, Cuauhtemoc
    Sherman, Andrew
    Talaat, Ahmed
    Cui, Jun
    Grainger, Brandon
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2024, 60 (04) : 6010 - 6022
  • [4] SURVEY OF RARE-EARTH - PERMANENT-MAGNET APPLICATIONS
    PARKER, RJ
    IEEE TRANSACTIONS ON MAGNETICS, 1981, 17 (06) : 2985 - 2987
  • [5] MAGNETOSTRICTION OF RARE-EARTH METALS IN PARAMAGNETIC ANTIFERROMAGNETIC AND FERROMAGNETIC RANGES
    BELOV, KP
    LEVITIN, RZ
    PONOMARE.BK
    SOVIET PHYSICS JETP-USSR, 1966, 22 (06): : 1185 - &
  • [7] Low-temperature phase MnBi compound: A potential candidate for rare-earth free permanent magnets
    Ly, V.
    Wu, X.
    Smillie, L.
    Shoji, T.
    Kato, A.
    Manabe, A.
    Suzuki, K.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 615 : S285 - S290
  • [8] Comparisons of Rare-Earth and Rare-Earth-Free External Rotor Permanent Magnet Assisted Synchronous Reluctance Motors
    Bonthu, Sai Sudheer Reddy
    Arafat, A. K. M.
    Choi, Seungdeog
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2017, 64 (12) : 9729 - 9738
  • [9] PERMANENT-MAGNET MATERIALS BASED ON RARE-EARTH METALS
    BURZO, E
    STUDII SI CERCETARI DE FIZICA, 1973, 25 (05): : 595 - 621
  • [10] NEW PERMANENT MAGNET MATERIALS CONTAINING RARE-EARTH METALS
    NESBITT, EA
    JOURNAL OF APPLIED PHYSICS, 1969, 40 (03) : 1259 - &