An Ensemble Machine Learning Method for Single and Clustered Cervical Cell Classification

被引:8
|
作者
Kuko, Mohammed [1 ]
Pourhomayoun, Mohammad [1 ]
机构
[1] Calif State Univ Los Angeles, Comp Sci Dept, Los Angeles, CA 90032 USA
关键词
Cervical cancer; Cervical cytology; Pap smear; Liquid-based cytology; Machine vision; Machine Learning; Ensemble Learning;
D O I
10.1109/IRI.2019.00043
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cervical Cancer was in recent history a major cause of death for women of childbearing age. This changed when in the 1950s the Papanicolaou (Pap smear) test was introduced to identify and diagnose cervical cancer in its infancy. The introduction of the Pap smear test dropped cervical cancer related deaths by 60% but still approximately 4,210 women die from cervical cancer in the United State annually. The goal of our research is to aid in the methods of identifying and classifying cervical cancer used in the Pap smear or Liquid-based Cytology (LBC) with cutting edge machine vision, and ensemble learning techniques. The contribution of this research is to develop an automated Pap smear screening system that identifies cells within a cervical cell slide sample and classify cells and clusters of cells as abnormal or normal as defined by the Bethesda System for reporting cervical cytology. Achieving an accuracy of 90.4% when evaluated with a five-fold cross-validation demonstrates promise in the creation of an automated Pap smear screening test.
引用
收藏
页码:216 / 222
页数:7
相关论文
共 50 条
  • [1] Single and Clustered Cervical Cell Classification with Ensemble and Deep Learning Methods
    Kuko, Mohammed
    Pourhomayoun, Mohammad
    INFORMATION SYSTEMS FRONTIERS, 2020, 22 (05) : 1039 - 1051
  • [2] Single and Clustered Cervical Cell Classification with Ensemble and Deep Learning Methods
    Mohammed Kuko
    Mohammad Pourhomayoun
    Information Systems Frontiers, 2020, 22 : 1039 - 1051
  • [3] A Machine Learning Method for Classification of Cervical Cancer
    Tanimu, Jesse Jeremiah
    Hamada, Mohamed
    Hassan, Mohammed
    Kakudi, Habeebah
    Abiodun, John Oladunjoye
    ELECTRONICS, 2022, 11 (03)
  • [4] Explainable Ensemble Machine Learning Method for Credit Risk Classification
    Ben Ghozzi, Sirine
    Ben HajKacem, Mohamed Aymen
    Essoussi, Nadia
    2024 INTERNATIONAL CONFERENCE ON INNOVATIONS IN INTELLIGENT SYSTEMS AND APPLICATIONS, INISTA, 2024,
  • [5] Breast Tumor Classification Using an Ensemble Machine Learning Method
    Assiri, Adel S.
    Nazir, Saima
    Velastin, Sergio A.
    JOURNAL OF IMAGING, 2020, 6 (06)
  • [6] Ensemble learning method for classification: Integrating data envelopment analysis with machine learning
    An, Qingxian
    Huang, Siwei
    Han, Yuxuan
    Zhu, You
    COMPUTERS & OPERATIONS RESEARCH, 2024, 169
  • [7] A deep ensemble learning approach for squamous cell classification in cervical cancer
    Gangrade, Jayesh
    Kuthiala, Rajit
    Gangrade, Shweta
    Singh, Yadvendra Pratap
    Manoj, R.
    Solanki, Surendra
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [8] A Machine Learning Based Ensemble Method for Automatic Multiclass Classification of Decisions
    Fu, Liming
    Liang, Peng
    Li, Xueying
    Yang, Chen
    PROCEEDINGS OF EVALUATION AND ASSESSMENT IN SOFTWARE ENGINEERING (EASE 2021), 2021, : 40 - 49
  • [9] A Novel Ensemble Bagging Classification Method for Breast Cancer Classification Using Machine Learning Techniques
    Ponnaganti, Naga Deepti
    Anitha, Raju
    TRAITEMENT DU SIGNAL, 2022, 39 (01) : 229 - 237
  • [10] New ensemble machine learning method for classification and prediction on gene expression data
    Wang, Ching Wei
    2006 28TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-15, 2006, : 60 - 63