CANARDS EXISTENCE IN THE HINDMARSH-ROSE MODEL

被引:5
|
作者
Ginoux, Jean-Marc [1 ]
Llibre, Jaume [2 ]
Tchizawa, Kiyoyuki [3 ]
机构
[1] Univ Toulon & Var, Lab Informat & Syst, UMR, CNRS 7020, BP 20132, F-83957 La Garde, France
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
[3] Inst Adm Engn Ltd, Tokyo 1010021, Japan
基金
欧盟地平线“2020”;
关键词
Hindmarsh-Rose model; singularly perturbed dynamical systems; canard solutions; ASYMPTOTIC STABILITY; SYSTEMS;
D O I
10.1051/mmnp/2019012
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In two previous papers we have proposed a new method for proving the existence of "canard solutions" on one hand for three and four-dimensional singularly perturbed systems with only one fast variable and, on the other hand for four-dimensional singularly perturbed systems with two fast variables [J.M. Ginoux and J. Llibre, Qual. Theory Dyn. Syst. 15 (2016) 381-431; J.M. Ginoux and J. Llibre, Qual. Theory Dyn. Syst. 15 (2015) 342010]. The aim of this work is to extend this method which improves the classical ones used till now to the case of three-dimensional singularly perturbed systems with two fast variables. This method enables to state a unique generic condition for the existence of "canard solutions" for such three-dimensional singularly perturbed systems which is based on the stability of folded singularities (pseudo singular points in this case) of the normalized slow dynamics deduced from a well-known property of linear algebra. Applications of this method to a famous neuronal bursting model enables to show the existence of "canard solutions" in the Hindmarsh-Rose model.
引用
下载
收藏
页数:21
相关论文
共 50 条
  • [1] Hindmarsh-Rose neuron model with memristors
    Usha, K.
    Subha, P. A.
    BIOSYSTEMS, 2019, 178 : 1 - 9
  • [2] On the analytical solutions of the Hindmarsh-Rose neuronal model
    Duarte, Jorge
    Januario, Cristina
    Martins, Nuno
    NONLINEAR DYNAMICS, 2015, 82 (03) : 1221 - 1231
  • [3] An equivalent electrical circuit for the Hindmarsh-Rose model
    Ochs, Karlheinz
    Jenderny, Sebastian
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2021, 49 (11) : 3526 - 3539
  • [4] Hamiltonian energy in a modified Hindmarsh-Rose model
    Zheng, Qianqian
    Xu, Yong
    Shen, Jianwei
    FRONTIERS IN NETWORK PHYSIOLOGY, 2024, 4
  • [5] Implementation of the Hindmarsh-Rose Model Using Stochastic Computing
    Camps, Oscar
    Stavrinides, Stavros G.
    de Benito, Carol
    Picos, Rodrigo
    MATHEMATICS, 2022, 10 (23)
  • [6] Hindmarsh-Rose Neurons Model of Liner and Nonliner Analysis
    Gang, Wang
    2012 THIRD INTERNATIONAL CONFERENCE ON THEORETICAL AND MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE (ICTMF 2012), 2013, 38 : 10 - 15
  • [7] Cardiac behaviors and chaotic arrhythmias in the Hindmarsh-Rose model
    Stenzinger, R. V.
    Scalvin, T. E.
    Morelo, P. A.
    Tragtenberg, M. H. R.
    CHAOS SOLITONS & FRACTALS, 2023, 175
  • [8] Complex bifurcation structures in the Hindmarsh-Rose neuron model
    Gonzalez-Miranda, J. M.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (09): : 3071 - 3083
  • [9] Finding Periodic Orbits in the Hindmarsh-Rose Neuron Model
    Angeles Martinez, M.
    Barrio, Roberto
    Serrano, Sergio
    PROGRESS AND CHALLENGES IN DYNAMICAL SYSTEMS, 2013, 54 : 301 - 308
  • [10] Deterministic and stochastic bifurcations in the Hindmarsh-Rose neuronal model
    Djeundam, S. R. Dtchetgnia
    Yamapi, R.
    Kofane, T. C.
    Aziz-Alaoui, M. A.
    CHAOS, 2013, 23 (03)