STABILITY ANALYSIS APPROACH TO A CLASS OF FUZZY CONTROLLED NONLINEAR TIME-VARYING SYSTEMS

被引:0
|
作者
Precup, Radu-Emil [1 ]
Tomescu, Manius L. [2 ]
Preitl, Stefan [3 ]
Petriu, Emil M. [4 ]
Kilyeni, Stefan [5 ]
Barbulescu, Constantin [6 ]
机构
[1] Politehn Univ Timisoara, Dept Automat & Appl Informat, RO-300223 Timisoara, Romania
[2] Aurel Vlaicu Univ Arad, Fac Comp Sci, Arad, Romania
[3] Politech Univ Timisoara, Timisoara, Romania
[4] Univ Ottawa, Sch Informat Technol & Engn, Ottawa, ON, Canada
[5] Politechn Univ Timisoara, Power Engn Dept, Timisoara, Romania
[6] Politech Univ Timisoara, Elect & Power Engn Fac, Timisoara, Romania
关键词
Fuzzy logic controller; Lyapunov function candidate; Lorenz system; nonlinear time-varying system; EIGENSTRUCTURE ASSIGNMENT; STABILIZATION; DESIGN; CHAOS; STATE;
D O I
10.1109/EURCON.2009.5167750
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A stability analysis approach a class of fuzzy controlled Single Input-Single Output nonlinear time-varying systems is proposed in the paper. The stability analysis is done in the sense of Lyapunov resulting in sufficient uniform asymptotic stability conditions to be used in the design of Takagi-Sugeno fuzzy logic controllers (FLCs). Use is made of quadratic positive definite Lyapunov function candidates. An illustrative example validates the stability analysis approach by the designing of the FLC to control a nonlinear plant.
引用
收藏
页码:958 / +
页数:3
相关论文
共 50 条
  • [1] A unified approach for stability analysis of a class of time-varying nonlinear systems
    Feng, CB
    Fei, SM
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (05) : 998 - 1002
  • [2] Comments on "A unified approach for stability analysis of a class of time-varying nonlinear systems"
    Sio, KC
    Lee, CK
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (10) : 1675 - 1677
  • [3] Stability analysis of a class of random nonlinear time-varying systems
    Jiao, Ticao
    Zhang, Cunshan
    Ma, Qian
    Zong, Guangdeng
    Wang, Yingchun
    [J]. PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 1713 - 1716
  • [4] ON GLOBAL STABILITY OF A CLASS OF NONLINEAR TIME-VARYING SYSTEMS
    PURI, NN
    [J]. JOURNAL OF BASIC ENGINEERING, 1966, 88 (02): : 399 - &
  • [5] Stability analysis for time-varying nonlinear systems
    Hadj Taieb, Nizar
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2022, 95 (06) : 1497 - 1506
  • [6] Passivity approach to stability analysis for nonlinear and time-varying dynamic systems
    Feng, Chunbo
    Zhang, Kanjian
    [J]. Proceedings of the 24th Chinese Control Conference, Vols 1 and 2, 2005, : 1825 - 1828
  • [7] On fixed-time stability of a class of nonlinear time-varying systems
    Braidiz, Youness
    Polyakov, Andrey
    Efimov, Denis
    Perruquetti, Wilfrid
    [J]. IFAC PAPERSONLINE, 2020, 53 (02): : 6358 - 6363
  • [8] A Stability Analysis for a class of Systems with Time-varying Delay
    Guo, Zixiang
    Jiang, Xiefu
    Fan, Huaxu
    Yang, Qi
    [J]. PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 395 - 398
  • [9] A Stability Analysis for a class of Systems with Time-varying Delay
    Guo Zixiang
    [J]. 2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, : 577 - 580
  • [10] STABILITY ANALYSIS OF NONLINEAR AND TIME-VARYING DISCRETE SYSTEMS
    NARENDRA, KS
    CHO, YS
    [J]. SIAM JOURNAL ON CONTROL, 1968, 6 (04): : 625 - +