Schur-Power Convexity of a Completely Symmetric Function Dual

被引:6
|
作者
Shi, Huan-Nan [1 ]
Du, Wei-Shih [2 ]
机构
[1] Beijing Union Univ, Teachers Coll, Dept Elect Informat, Beijing 100011, Peoples R China
[2] Natl Kaohsiung Normal Univ, Dept Math, Kaohsiung 82444, Taiwan
来源
SYMMETRY-BASEL | 2019年 / 11卷 / 07期
关键词
Schur-power convexity; Schur-convexity; Schur-geometric convexity; Schur-harmonic convexity; completely symmetric function; dual form; HARMONIC CONVEXITIES; FORM;
D O I
10.3390/sym11070897
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, by applying the decision theorem of the Schur-power convex function, the Schur-power convexity of a class of complete symmetric functions are studied. As applications, some new inequalities are established.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] SCHUR CONVEXITY OF DUAL FORM OF THE COMPLETE SYMMETRIC FUNCTION
    Zhang, Kongsheng
    Shi, Huannan
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2013, 16 (04): : 963 - 970
  • [2] Schur-power convexity of integral mean for convex functions on the coordinates
    Shi, Huannan
    Zhang, Jing
    OPEN MATHEMATICS, 2023, 21 (01):
  • [3] Schur-convexity for compositions of complete symmetric function dual
    Huan-Nan Shi
    Pei Wang
    Jian Zhang
    Journal of Inequalities and Applications, 2020
  • [4] Schur-convexity for compositions of complete symmetric function dual
    Shi, Huan-Nan
    Wang, Pei
    Zhang, Jian
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [5] THE SCHUR-HARMONIC-CONVEXITY OF DUAL FORM OF THE HAMY SYMMETRIC FUNCTION
    Meng, Junxia
    Chu, Yuming
    Tang, Xiaomin
    MATEMATICKI VESNIK, 2010, 62 (01): : 37 - 46
  • [6] SCHUR M-POWER CONVEXITY OF GENERALIZED HAMY SYMMETRIC FUNCTION
    Wang, Wen
    Yang, Shiguo
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2014, 8 (03): : 661 - 667
  • [7] Schur convexity of the dual form of complete symmetric function involving exponent parameter
    Shi, Huan-Nan
    Wu, Shan-He
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2020, (44): : 836 - 845
  • [8] Schur convexity of the dual form of complete symmetric function involving exponent parameter
    Shi, Huan-Nan
    Wu, Shan-He
    Italian Journal of Pure and Applied Mathematics, 2020, 44 : 836 - 845
  • [9] Schur-convexity, Schur-geometric and Schur-harmonic convexity for a composite function of complete symmetric function
    Shi, Huan-Nan
    Zhang, Jing
    Ma, Qing-Hua
    SPRINGERPLUS, 2016, 5
  • [10] Schur-convexity of the complete symmetric function
    Guan, Kaizhong
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2006, 9 (04): : 567 - 576