TEM study of iridium silicide contact layers for low Schottky barrier MOSFETs

被引:0
|
作者
Laszcz, A.
Czerwinski, A.
Ratajczak, J.
Katcki, J.
Breil, N.
Larrieu, G.
Dubois, E.
机构
[1] Inst Elect Mat Technol, PL-02668 Warsaw, Poland
[2] CNRS, UMRS 8520, IEMNASEN, F-59652 Villeneuve Dascq, France
[3] STMicroelect, F-38926 Crolles, France
关键词
annealing; iridium silicide; selected-area diffraction; transmission electron microscope;
D O I
暂无
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
An influence of annealing temperatures (300, 400 and 500 degrees C) on the iridium silicide formation in the Ir/Si structure was analysed by means of the transmission electron microscopy (TEM). The silicide layer is formed by the solid-state reaction between 15 nm thick Ir metallisation and a Si layer during the rapid-thermal-annealing (RTA) process for 120 s. The silicide layers are used as source/drain contacts for a novel technology of low Schottky barrier MOSFETs on SOL For this reason the high quality of the silicide/Si interface and the silicide structure are essential for the electrical properties of the device. The studies enabled the determination of the silicide layer thickness, the layer morphology, and the silicide/Si interface roughness as well as the identification of the silicide phase. Annealing of the Ir/Si structure at 300 and 400 degrees C caused formation of an amorphous iridium silicide layer between the iridium layer and the silicon substrate. At the highest annealing temperature (500 degrees C) the whole Ir layer completely reacted with Si, forming a crystalline iridium silicide layer. A diffraction analysis showed that the silicide layer consists of the dominant IrSi orthorhombic phase and another silicide phase with higher content of silicon (IrSix). The IrSix is placed between IrSi and Si. It indicates that during solid-state reaction at 500 degrees C the Si diffusion is predominant.
引用
收藏
页码:551 / 554
页数:4
相关论文
共 50 条
  • [1] TEM study of PtSi contact layers for low Schottky barrier MOSFETs
    Laszcz, A.
    Katcki, J.
    Ratajczak, J.
    Czerwinski, A.
    Breil, N.
    Larrieu, G.
    Dubois, E.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2006, 253 (1-2): : 274 - 277
  • [2] SCHOTTKY-BARRIER HEIGHT OF IRIDIUM SILICIDE
    OHDOMARI, I
    TU, KN
    DHEURLE, FM
    KUAN, TS
    PETERSSON, S
    APPLIED PHYSICS LETTERS, 1978, 33 (12) : 1028 - 1030
  • [3] COBALT SILICIDE LAYERS ON SI .2. SCHOTTKY-BARRIER HEIGHT AND CONTACT RESISTIVITY
    VANGURP, GJ
    JOURNAL OF APPLIED PHYSICS, 1975, 46 (10) : 4308 - 4311
  • [4] Investigation on the barrier height and phase transformation of nickel silicide Schottky contact
    Huang, SH
    Tian, Y
    Lu, F
    APPLIED SURFACE SCIENCE, 2004, 234 (1-4) : 362 - 368
  • [6] TUNGSTEN SILICIDE BARRIER LAYERS IN ALUMINUM OHMIC CONTACT SYSTEMS
    HARA, T
    HAYASHIDA, H
    TAKAHASHI, S
    YAMANOUE, A
    THIN SOLID FILMS, 1989, 177 : 9 - 16
  • [7] Comparison between furnace and rapid thermal annealed iridium silicide Schottky barrier diodes
    JimenezLeube, J
    Clement, M
    Almendra, A
    SanzMaudes, J
    Rodriguez, T
    MATERIALS SCIENCE AND TECHNOLOGY, 1995, 11 (11) : 1215 - 1218
  • [8] Comparison between furnace and rapid thermal annealed iridium silicide Schottky barrier diodes
    Jimenez-Leube, J.
    Clement, M.
    Almendra, A.
    Sanz-Maudes, J.
    Materials Science and Technology, 11 (11):
  • [9] High barrier iridium silicide Schottky contacts on Si fabricated by rapid thermal annealing
    Sanz-Maudes, J
    Jiménez-Luebe, FJ
    Clement, M
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1999, 17 (02): : 397 - 404
  • [10] A Monte Carlo Study of Ambipolar Schottky Barrier MOSFETs
    Zeng, Lang
    Liu, Xiao Yan
    Du, Gang
    Kang, Jin Feng
    Han, Ru Qi
    IWCE-13: 2009 13TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ELECTRONICS, 2009, : 289 - 292