Using an analytical model of multiple dipolarizing flux bundles (DFBs) embedded in earthward traveling bursty bulk flows, we demonstrate how equatorially mirroring electrons can travel long distances and gain hundreds of keV from betatron acceleration. The model parameters are constrained by four Time History of Events and Macroscale Interactions during Substorms satellite observations, putting limits on the DFBs' speed, location, and magnetic and electric field magnitudes. We find that the sharp, localized peaks in magnetic field have such strong spatial gradients that energetic electrons del B drift in closed paths around the peaks as those peaks travel earthward. This is understood in terms of the third adiabatic invariant, which remains constant when the field changes on timescales longer than the electron's drift timescale: An energetic electron encircles a sharp peak in magnetic field in a closed path subtending an area of approximately constant flux. As the flux bundle magnetic field increases the electron's drift path area shrinks and the electron is prevented from escaping to the ambient plasma sheet, while it continues to gain energy via betatron acceleration. When the flux bundles arrive at and merge with the inner magnetosphere, where the background field is strong, the electrons suddenly gain access to previously closed drift paths around the Earth. DFBs are therefore instrumental in transporting and energizing energetic electrons over long distances along the magnetotail, bringing them to the inner magnetosphere and energizing them by hundreds of keV. Plain Language Summary Scientists have wondered how narrow flow channels in space could transport and energize electrons enough before the electrons escape the channel. They also wondered how narrow, localized magnetic field peaks (and their electric fields) contribute to electron energization in comparison to wide, large-scale electromagnetic fields. We show that it is actually because these fields are so localized that the electrons are transported closer toward Earth. Because of the rules that govern an electron's motion, electrons get trapped circling around the localized magnetic field peak and cannot escape the flow channel. As the peak travels earthward, it takes the electrons along with it and energizes the electrons along the way. When multiple peaks follow each other, they all contribute to a longer energization signature. The magnetic field peaks can also pileup when they hit the strong magnetic field closer to Earth, creating a bigger, longer magnetic field signature. It once again appears that great things come in small packages.