Historical Document Image Denoising by Ising Model

被引:0
|
作者
Chen, Guoming [1 ]
Chen, Qiang [1 ]
Chen, Yiqun [1 ]
Zhu, Xiongyong [1 ]
机构
[1] Guangdong Univ Educ, Dept Comp Sci, Guangzhou 510303, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Historical Document; Image Denoising; Ising Model;
D O I
10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00086
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a historical document image denoising method based on Ising-like model and Anisotropic filter. Physical statistics and morphological smooth process are combined together to improve image particulars. We first apply an Ising model to the 8-th bit plane of the original historical document image, then the image energy field and density is through Ising dynamic evolution. After the image is processed, it has been smoothed by Anisotropic morphological for several times. At last, we get the restored image document. We compare the visual quality changes before and after Ising evolution in different Anisotropic morphological condition respectively. Experimental results demonstrate that the Ising evolved image can better restore the local area details of the degraded historical document image.
引用
收藏
页码:457 / 461
页数:5
相关论文
共 50 条
  • [1] Deep learning for terahertz image denoising in nondestructive historical document analysis
    Balaka Dutta
    Konstantin Root
    Ingrid Ullmann
    Fabian Wagner
    Martin Mayr
    Mathias Seuret
    Mareike Thies
    Daniel Stromer
    Vincent Christlein
    Jan Schür
    Andreas Maier
    Yixing Huang
    [J]. Scientific Reports, 12 (1)
  • [2] Deep learning for terahertz image denoising in nondestructive historical document analysis
    Dutta, Balaka
    Root, Konstantin
    Ullmann, Ingrid
    Wagner, Fabian
    Mayr, Martin
    Seuret, Mathias
    Thies, Mareike
    Stromer, Daniel
    Christlein, Vincent
    Schuer, Jan
    Maier, Andreas
    Huang, Yixing
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01):
  • [3] Wavelet diffusion for document image denoising
    Fan, LX
    Fan, LY
    Tan, CL
    [J]. SEVENTH INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION, VOLS I AND II, PROCEEDINGS, 2003, : 1188 - 1192
  • [4] Historical document image binarization
    Mello, Carlos A. B.
    Oliveira, Adriano L. I.
    Sanchez, Angel
    [J]. VISAPP 2008: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON COMPUTER VISION THEORY AND APPLICATIONS, VOL 1, 2008, : 108 - 113
  • [5] A hybrid CNN-Transformer model for Historical Document Image Binarization
    Rezanezhad, Vahid
    Baierer, Konstantin
    Neudecker, Clemens
    [J]. PROCEEDINGS OF THE 2023 INTERNATIONAL WORKSHOP ON HISTORICAL DOCUMENT IMAGING AND PROCESSING, HIP 2023, 2023, : 79 - 84
  • [6] Historical Document Image Binarization: A Review
    Tensmeyer C.
    Martinez T.
    [J]. SN Computer Science, 2020, 1 (3)
  • [7] An image topic model for image denoising
    Fu, Bo
    Li, Wei-Wei
    Fu, You-Ping
    Song, Chuan-Ming
    [J]. NEUROCOMPUTING, 2015, 169 : 119 - 123
  • [8] A survey of historical document image datasets
    Konstantina Nikolaidou
    Mathias Seuret
    Hamam Mokayed
    Marcus Liwicki
    [J]. International Journal on Document Analysis and Recognition (IJDAR), 2022, 25 : 305 - 338
  • [9] A survey of historical document image datasets
    Nikolaidou, Konstantina
    Seuret, Mathias
    Mokayed, Hamam
    Liwicki, Marcus
    [J]. INTERNATIONAL JOURNAL ON DOCUMENT ANALYSIS AND RECOGNITION, 2022, 25 (04) : 305 - 338
  • [10] A combination model for image denoising
    Xu, Yi-ping
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2016, 32 (03): : 781 - 792