Several studies have demonstrated that three calcium-binding proteins parvalbumin (PV); calbindin D-28k (CB) and calretinin (CR) mark distinct subsets of cortical interneurons. This study demonstrates, in cortical and subcortical visual structures, the coexistence of two calcium-binding proteins in some neuronal subpopulations. The human Visual cortex (VC), lateral geniculate nucleus (LGN), lateral inferior pulvinar (LIP) and superior colliculus (SC) were examined by a double-labelling immunocylochemical technique. The VC showed mostly separate populations of PV, CB and CR immunoreactive (-ir) interneurons, but also small populations of double-stained PV + CR and CR + CB neurons, while PV + CB neurons were less frequent. An average of 2.5% of the immunoreactive neurons were double-stained for PV + CR and 7.1% for CR + CB in area 17, while this percentage was slightly higher in association area 18 (3.3 and 7.4%, respectively). In the LGN and LIP, double-stained neurons were scarce, but in the fibre capsule of these nuclei, as well as in the optic radiation (OR) and white matter underlying area 17, both double-stained PV + CR or CR + CB and separate populations of PV-ir, CB-ir and CR-ir neurons and fibres were observed. Unlike the thalamic regions, the SC showed some double-stained PV + CR and CR + CB neurons, scattered both in the superficial and deep layers. These findings are discussed in the light of similar observations recently reported from other regions of the human brain. (C) 1997 Elsevier Science B.V.