Optimal times for constrained nonlinear control problems without local controllability

被引:0
|
作者
Cardaliaguet, P
Quincampoix, M
SaintPierre, P
机构
[1] Universite Paris-Dauphine, Paris, France
来源
APPLIED MATHEMATICS AND OPTIMIZATION | 1997年 / 36卷 / 01期
关键词
viability; optimal control; partial differential equation; value function; contingent solution; viscosity solution;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study optimal times to reach a given closed target for controlled systems with a state constraint. Our goal is to characterize these optimal time functions in such a way that it is possible to compute them numerically and we do not need to compute trajectories of the controlled system. In this paper we provide new results using viability theory. This allows us to study optimal time functions free from the controllability assumptions classically made in the partial differential equations approach.
引用
收藏
页码:21 / 42
页数:22
相关论文
共 50 条
  • [1] Optimal times for constrained nonlinear control problems without local controllability
    Cardaliaguet P.
    Quincampoix M.
    Saint-Pierre P.
    Applied Mathematics and Optimization, 1997, 36 (1): : 21 - 42
  • [2] OPTIMAL TIMES FOR CONSTRAINED CONTROLLED SYSTEMS WITHOUT LOCAL-CONTROLLABILITY
    CARDALIAGUET, P
    QUINCAMPOIX, M
    SAINTPIERRE, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1994, 318 (07): : 607 - 612
  • [3] REACHABILITY AND MINIMAL TIMES FOR STATE CONSTRAINED NONLINEAR PROBLEMS WITHOUT ANY CONTROLLABILITY ASSUMPTION
    Bokanowski, Olivier
    Forcadel, Nicolas
    Zidani, Hasnaa
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2010, 48 (07) : 4292 - 4316
  • [4] DETERMINISTIC STATE-CONSTRAINED OPTIMAL CONTROL PROBLEMS WITHOUT CONTROLLABILITY ASSUMPTIONS
    Bokanowski, Olivier
    Forcadel, Nicolas
    Zidani, Hasnaa
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2011, 17 (04) : 995 - 1015
  • [5] ON THE LOCAL CONTROLLABILITY FOR OPTIMAL CONTROL PROBLEMS
    Arutyunov, A. V.
    Zhukovskiy, S. E.
    MATEMATICKI VESNIK, 2024, 76 (1-2): : 56 - 65
  • [6] On controllability of trajectories in state-constrained optimal control problems
    Arutyunov A.V.
    Chernikova N.Yu.
    Journal of Mathematical Sciences, 2001, 103 (6) : 664 - 669
  • [7] Galerkin Optimal Control for Constrained Nonlinear Problems
    Boucher, Randy
    Kang, Wei
    Gong, Qi
    2014 AMERICAN CONTROL CONFERENCE (ACC), 2014, : 2432 - 2437
  • [8] Local Controllability and Trajectories of Geometric Local Infimum in Optimal Control Problems
    Avakov E.D.
    Magaril-Il’yaev G.G.
    Journal of Mathematical Sciences, 2023, 269 (2) : 129 - 142
  • [9] Discontinuous Galerkin Optimal Control for Constrained Nonlinear Problems
    Boucher, Randy
    Kang, Wei
    Gong, Qi
    11TH IEEE INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION (ICCA), 2014, : 84 - 89
  • [10] AN OPTIMAL PID CONTROLLER DESIGN FOR NONLINEAR CONSTRAINED OPTIMAL CONTROL PROBLEMS
    Li, Bin
    Teo, Kok Lay
    Lim, Cheng-Chew
    Duan, Guang Ren
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2011, 16 (04): : 1101 - 1117