Bayesian regularization: application to calibration in NIR spectroscopy

被引:5
|
作者
Alciaturi, C. E. [1 ,2 ]
Quevedo, G. [2 ]
机构
[1] INZIT, Maracaibo, Venezuela
[2] Univ Zulia, LUZ, Maracaibo 4011, Venezuela
关键词
Bayesian regularization; linear models; calibration; near-infrared spectroscopy; PARTIAL LEAST-SQUARES; PLS; REGRESSION; TUTORIAL; NETWORKS;
D O I
10.1002/cem.1253
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The use of a Bayesian regularization algorithm is proposed for calibration in near-infrared spectroscopy (NIR) with linear models. The algorithm used in this work is based upon the concepts developed by MacKay for inference and model comparison in artificial neural networks. it is demonstrated that this algorithm is fast, easy to use, and shows good generalization properties without previous dimensionality reduction. Examples are shown for NIR spectroscopy calibration and synthetic data. Copyright (C) 2009 John Wiley & Sons, Ltd.
引用
收藏
页码:562 / 568
页数:7
相关论文
共 50 条
  • [1] APPLICATION OF NIR SPECTROSCOPY
    Pinkas, Jaroslav
    LISTY CUKROVARNICKE A REPARSKE, 2021, 137 (02): : 65 - 65
  • [2] An improved identification method based on Bayesian regularization optimization for the imbalanced proportion plastics recycling using NIR spectroscopy
    Li, Huaqing
    Li, Lin
    Jiao, Shengqiang
    Zhao, Fu
    Sutherland, John W.
    Yin, Fengfu
    JOURNAL OF MATERIAL CYCLES AND WASTE MANAGEMENT, 2024, : 3838 - 3851
  • [3] Application of multivariate calibration and NIR spectroscopy for the quantification of methylxanthines in yerba mate (Ilex paraguariensis)
    Mazur, Larize
    Peralta-Zamora, Patricio Guillermo
    Demczuk, Bogdan, Jr.
    Ribani, Rosemary Hoffmann
    JOURNAL OF FOOD COMPOSITION AND ANALYSIS, 2014, 35 (02) : 55 - 60
  • [4] The Application of Bayesian Penalty Regression in Sparse Regularization
    Chen, Weijie
    2020 INTERNATIONAL CONFERENCE ON BIG DATA & ARTIFICIAL INTELLIGENCE & SOFTWARE ENGINEERING (ICBASE 2020), 2020, : 158 - 165
  • [5] Sparse regularization of NIR spectra using implicit spiking and derivative spectroscopy
    Anderssen, R. S.
    de Hoog, F. R.
    Wesley, I. J.
    Zwart, A.
    20TH INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION (MODSIM2013), 2013, : 113 - 119
  • [6] Feature selection based convolutional neural network pruning and its application in calibration modeling for NIR spectroscopy
    Chen, Yuan-yuan
    Wang, Zhi-bin
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2019, 191 : 103 - 108
  • [7] Comparative Study on Calibration Models Using NIR Spectroscopy Data
    Pan, Ning
    Yu, Zhixin
    Ling, Wei
    Xu, Jie
    Liao, Yumei
    JOURNAL OF APPLIED SPECTROSCOPY, 2024, 91 (01) : 253 - 259
  • [8] Durum wheat adulteration detection by NIR spectroscopy multivariate calibration
    Cocchi, M
    Durante, C
    Foca, G
    Marchetti, A
    Tassi, L
    Ulrici, A
    TALANTA, 2006, 68 (05) : 1505 - 1511
  • [9] Influence of physical factors on the accuracy of calibration models for NIR spectroscopy
    Blanco, Marcelo
    Peguero, Anna
    JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, 2010, 52 (01) : 59 - 65
  • [10] Comparative Study on Calibration Models Using NIR Spectroscopy Data
    Ning Pan
    Zhixin Yu
    Wei Ling
    Jie Xu
    Yumei Liao
    Journal of Applied Spectroscopy, 2024, 91 : 253 - 259