Progressive EM for Latent Tree Models and Hierarchical Topic Detection

被引:0
|
作者
Chen, Peixian [1 ]
Zhang, Nevin L. [1 ]
Poon, Leonard K. M. [2 ]
Chen, Zhourong [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Hong Kong, Peoples R China
[2] Hong Kong Inst Educ, Hong Kong, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hierarchical latent tree analysis (HLTA) is recently proposed as a new method for topic detection. It differs fundamentally from the LDA-based methods in terms of topic definition, topic-document relationship, and learning method. It has been shown to discover significantly more coherent topics and better topic hierarchies. However, HLTA relies on the Expectation-Maximization (EM) algorithm for parameter estimation and hence is not efficient enough to deal with large datasets. In this paper, we propose a method to drastically speed up HLTA using a technique inspired by the advances in the method of moments. Empirical experiments show that our method greatly improves the efficiency of HLTA. It is as efficient as the state-of-the-art LDA-based method for hierarchical topic detection and finds substantially better topics and topic hierarchies.
引用
下载
收藏
页码:1498 / 1504
页数:7
相关论文
共 50 条
  • [1] Latent tree models for hierarchical topic detection
    Chen, Peixian
    Zhang, Nevin L.
    Liu, Tengfei
    Poon, Leonard K. M.
    Chen, Zhourong
    Khawar, Farhan
    ARTIFICIAL INTELLIGENCE, 2017, 250 : 105 - 124
  • [2] A Novel Document Generation Process for Topic Detection Based on Hierarchical Latent Tree Models
    Chen, Peixian
    Chen, Zhourong
    Zhang, Nevin L.
    SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING WITH UNCERTAINTY, ECSQARU 2019, 2019, 11726 : 265 - 276
  • [3] PWA-PEM for Latent Tree Model and Hierarchical Topic Detection
    Liu, Zhuchen
    Chen, Hao
    Li, Jie
    Yu, Yanhua
    INTELLIGENT INFORMATION PROCESSING IX, 2018, 538 : 183 - 191
  • [4] Neural Topic Models for Hierarchical Topic Detection and Visualization
    Pham, Dang
    Le, Than M., V
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2021: RESEARCH TRACK, PT III, 2021, 12977 : 35 - 51
  • [5] Topic Browsing System for Research Papers Based on Hierarchical Latent Tree Analysis
    Poon, Leonard K. M.
    Leung, Chun Fai
    Chen, Peixian
    Zhang, Nevin L.
    WEB AND BIG DATA, APWEB-WAIM 2017, PT II, 2017, 10367 : 341 - 344
  • [6] HIERARCHICAL MULTINOMIAL PROCESSING TREE MODELS: A LATENT-TRAIT APPROACH
    Klauer, Karl Christoph
    VOX SANGUINIS, 2010, 98 : 70 - 98
  • [7] Hierarchical Multinomial Processing Tree Models: A Latent-Trait Approach
    Karl Christoph Klauer
    Psychometrika, 2010, 75 : 70 - 98
  • [8] Hierarchical Multinomial Processing Tree Models: A Latent-Class Approach
    Karl Christoph Klauer
    Psychometrika, 2006, 71 : 7 - 31
  • [9] Hierarchical multinomial processing tree models: A latent-class approach
    Klauer, Karl Christoph
    PSYCHOMETRIKA, 2006, 71 (01) : 7 - 31
  • [10] HIERARCHICAL MULTINOMIAL PROCESSING TREE MODELS: A LATENT-TRAIT APPROACH
    Klauer, Karl Christoph
    PSYCHOMETRIKA, 2010, 75 (01) : 70 - 98