Scale-Dependent Electrostatic Stiffening in Biopolymers

被引:29
|
作者
Gubarev, Alexander [1 ,2 ]
Carrillo, Jan-Michael Y. [1 ]
Dobrynin, Andrey V. [1 ]
机构
[1] Univ Connecticut, Dept Phys, Inst Mat Sci, Polymer Program, Storrs, CT 06269 USA
[2] St Petersburg State Univ, Dept Phys, St Petersburg, Russia
关键词
PERSISTENCE LENGTH; FLEXIBLE POLYELECTROLYTES; COUNTERION CONDENSATION; DNA-MOLECULES; POLYMERS; CHAINS;
D O I
10.1021/ma9008143
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Using a combination of the molecular dynamics simulations and theoretical calculations, we have demonstrated that bending rigidity of biological polyelectrolytes (semiflexible charged polymers) is scale-dependent. A bond-bond correlation function describing a chain's orientational memory can be approximated by a sum of two exponential functions manifesting the existence of the two characteristic length scales. One describes the chain's bending rigidity at the distances along the polymer backbone shorter than the Debye screening length, whereas another controls the long-scale chain's orientational correlations. The short length scale bending rigidity is proportional to the Debye screening length at high salt concentrations and shows a weak logarithmic dependence on salt concentration when the Debye screening length exceeds a crossover Value of kappa(-1)(cr) proportional to (l(B)alpha(2)/l(p))(-1/2) (where l(B) is the Bjerrum length, alpha is the fraction of ionized groups, and l(p) is a bare persistence length). The long-scale chain's bending rigidity has a well-known Odijk-Skolnick-Fixman form with a quadratic dependence on the Debye radius. Simulation results and a theoretical model demonstrate good qualitative agreement.
引用
收藏
页码:5851 / 5860
页数:10
相关论文
共 50 条
  • [1] Scale-dependent halo bias from scale-dependent growth
    Parfrey, Kyle
    Hui, Lam
    Sheth, Ravi K.
    [J]. PHYSICAL REVIEW D, 2011, 83 (06):
  • [2] Scale-dependent grasp
    Kaneko, M
    Shirai, T
    Tsuji, T
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 2000, 30 (06): : 806 - 816
  • [3] Scale-dependent behavior of scale equations
    Kim, Pilwon
    [J]. CHAOS, 2009, 19 (03)
  • [4] On the origin of stiffening in biopolymers
    Van der Giessen, E
    Koeman, T
    van Dillen, T
    Onck, P
    [J]. STRUCTURE AND MECHANICAL BEHAVIOR OF BIOLOGICAL MATERIALS, 2005, 874 : 1 - 7
  • [5] Stereo dynamics are not scale-dependent
    Hess, RF
    Wilcox, LM
    [J]. VISION RESEARCH, 2006, 46 (12) : 1911 - 1923
  • [6] SUPERSYMMETRY AND SCALE-DEPENDENT ANALYSIS
    IKEDA, M
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1983, 70 (01): : 249 - 258
  • [7] Scale-dependent fracture networks
    Forstner, Stephanie R.
    Laubach, Stephen E.
    [J]. JOURNAL OF STRUCTURAL GEOLOGY, 2022, 165
  • [8] Scale-dependent fractal geometry
    Catrakis, HJ
    Dimotakis, PE
    [J]. MIXING: CHAOS AND TURBULENCE, 1999, 373 : 145 - 162
  • [9] Scale-dependent stochastic quantization
    Altaisky, Mikhail
    [J]. Frontiers of Fundamental Physics, 2006, : 155 - 161
  • [10] Scale-dependent landscape epidemiology
    Skelsey, P.
    [J]. PHYTOPATHOLOGY, 2011, 101 (06) : S167 - S167