Resilient Distributed Parameter Estimation With Heterogeneous Data

被引:26
|
作者
Chen, Yuan [1 ]
Kar, Soummya [1 ]
Moura, Jose M. E. [1 ]
机构
[1] Carnegie Mellon Univ, Dept Elect & Comp Engn, Pittsburgh, PA 15217 USA
基金
美国国家科学基金会;
关键词
Resilient estimation; Distributed estimation; Consensus plus Innovations; Multi-agent networks; INFERENCE; STRATEGIES; INTERNET;
D O I
10.1109/TSP.2019.2931171
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper studies resilient distributed estimation under measurement attacks. A set of agents each makes successive local, linear, noisy measurements of an unknown vector field collected in a vector parameter. The local measurement models are heterogeneous across agents and may he locally unobservable for the unknown parameter. An adversary compromises some of the measurement streams and changes their values arbitrarily. The agents' goal is to cooperate over a peer-to-peer communication network to process their (possibly compromised) local measurements and estimate the value of the unknown vector parameter. We present SAGE, the Saturating Adaptive Gain Estimator, a distributed, recursive, consensus + innovations estimator that is resilient to measurement attacks. We demonstrate that, as long as the number of compromised measurement streams is below a particular bound, then, SAGE guarantees that all of the agents' local estimates converge almost surely to the value of the parameter. The resilience of the estimator - i.e., the number of compromised measurement streams it can tolerate - does not depend on the topology of the inter-agent communication network. Finally, we illustrate the performance of SAGE through numerical examples.
引用
下载
收藏
页码:4918 / 4933
页数:16
相关论文
共 50 条
  • [1] Resilient Distributed Parameter Estimation in Sensor Networks
    Yan, Jiaqi
    Li, Kuo
    Ishii, Hideaki
    2023 AMERICAN CONTROL CONFERENCE, ACC, 2023, : 3478 - 3483
  • [2] Data-Driven Learning for Resilient Synchronization and Parameter Estimation of Heterogeneous Nonlinear Multiagent Systems
    Yang, Wang
    Dong, Jiuxiang
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2023, 21 (04) : 1 - 12
  • [3] Event-Based Resilient Distributed Estimation Under Multiple Heterogeneous Cyberattacks
    Guo, Xiaoyu
    Dong, Zhen
    Wang, Chenliang
    Ding, Zhengtao
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2023, 10 (02): : 625 - 635
  • [4] RESILIENT DISTRIBUTED FIELD ESTIMATION
    Chen, Yuan
    Kar, Soummya
    Moura, Jose M. F.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2020, 58 (03) : 1429 - 1456
  • [5] Parameter Estimation from Heterogeneous/Multimodal Data Sets
    Fijalkow, Inbar
    Heiman, Elad
    Messer, Hagit
    IEEE SIGNAL PROCESSING LETTERS, 2016, 23 (03) : 390 - 393
  • [6] Resilient Distributed Parameter Estimation for Sensor Networks Against Sparse-Varying Attacks
    Lei, Xuqiang
    Wen, Guanghui
    Chen, Guanrong
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2024, : 7331 - 7340
  • [7] Resilient Distributed Estimation: Sensor Attacks
    Chen, Yuan
    Kar, Soummya
    Moura, Jose M. F.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (09) : 3772 - 3779
  • [8] Robust distributed incremental LMS for parameter estimation using heterogeneous adaptive networks
    Farhid, Morteza
    Shamsi, Mousa
    Sedaaghi, Mohammad Hossein
    2015 7TH CONFERENCE ON INFORMATION AND KNOWLEDGE TECHNOLOGY (IKT), 2015,
  • [9] Distributed Parameter Estimation in Networks
    Rad, Kamiar Rahnama
    Tahbaz-Salehi, Alireza
    49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 5050 - 5055
  • [10] Distributed H∞ Estimation Resilient to Biasing Attacks
    Ugrinovskii, Valery
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2020, 7 (01): : 458 - 470