An electrically resistive sheet of glial cells for amplifying signals of neuronal extracellular recordings

被引:14
|
作者
Matsumura, R. [1 ]
Yamamoto, H. [2 ]
Niwano, M. [3 ]
Hirano-Iwata, A. [1 ]
机构
[1] Tohoku Univ, Grad Sch Biomed Engn, Aoba Ku, 6-6 Aramaki Aza Aoba, Sendai, Miyagi 9808579, Japan
[2] Tohoku Univ, Frontier Res Inst Interdisciplinary Sci, Aoba Ku, 6-6 Aramaki Aza Aoba, Sendai, Miyagi 9808578, Japan
[3] Tohoku Univ, Elect Commun Res Inst, Aoba Ku, 2-1-1 Katahira, Sendai, Miyagi 9808577, Japan
基金
日本学术振兴会; 日本科学技术振兴机构;
关键词
ACTION-POTENTIALS; BRAIN-TISSUE; ASTROCYTES; INTEGRIN; ARRAYS;
D O I
10.1063/1.4939629
中图分类号
O59 [应用物理学];
学科分类号
摘要
Electrical signals of neuronal cells can be recorded non-invasively and with a high degree of temporal resolution using multielectrode arrays (MEAs). However, signals that are recorded with these devices are small, usually 0.01%-0.1% of intracellular recordings. Here, we show that the amplitude of neuronal signals recorded with MEA devices can be amplified by covering neuronal networks with an electrically resistive sheet. The resistive sheet used in this study is a monolayer of glial cells, supportive cells in the brain. The glial cells were grown on a collagen-gel film that is permeable to oxygen and other nutrients. The impedance of the glial sheet was measured by electrochemical impedance spectroscopy, and equivalent circuit simulations were performed to theoretically investigate the effect of covering the neurons with such a resistive sheet. Finally, the effect of the resistive glial sheet was confirmed experimentally, showing a 6-fold increase in neuronal signals. This technique feasibly amplifies signals of MEA recordings. (C) 2016 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 11 条