On a new approach to calculating expectations for option pricing

被引:15
|
作者
Borovkov, K [1 ]
Novikov, A
机构
[1] Univ Melbourne, Dept Math & Stat, Melbourne, Vic 3010, Australia
[2] Univ Technol Sydney, Sch Math Sci, Sydney, NSW 2007, Australia
关键词
option pricing; barrier option; moment generating functions; change of measure;
D O I
10.1239/jap/1037816027
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We discuss a simple new approach to calculating expectations of a specific form used for the pricing of derivative assets in financial mathematics. We show that in the 'vanilla case', the expectations can be found by simply integrating the respective moment generating function with a certain weight. In situations corresponding to barrier-type options, we just need to carry out one more integration. The suggested approach appears to be the first (and, apart from Monte Carlo simulation, the only) one to allow the pricing of discretely monitored exotic options when the underlying asset is modelledby a general Levy process. We illustrate the method numerically by calculating the price of a discretely monitored lookback call option in the cases when the underlying follows the geometric Brownian and variance-gamma processes.
引用
收藏
页码:889 / 895
页数:7
相关论文
共 50 条
  • [1] New fuzzy pricing approach to real option
    Zhu, Dan-Mei
    Zhang, Tie
    Chen, Dong-Ling
    Gao, Hong-Xia
    [J]. Dongbei Daxue Xuebao/Journal of Northeastern University, 2008, 29 (11): : 1544 - 1547
  • [2] OPTION PRICING - A NEW APPROACH TO MINE VALUATION
    PALM, S
    PEARSON, N
    READ, J
    [J]. CIM BULLETIN, 1985, 78 (875): : 60 - 60
  • [3] OPTION PRICING - A NEW APPROACH TO MINE VALUATION
    PALM, SK
    PEARSON, ND
    READ, JA
    [J]. CIM BULLETIN, 1986, 79 (889): : 61 - 66
  • [4] A new approach for option pricing under stochastic volatility
    Carr P.
    Sun J.
    [J]. Review of Derivatives Research, 2007, 10 (2) : 87 - 150
  • [5] Option pricing: A new approach to valuing mining projects
    Armstrong, M
    Galli, A
    [J]. CIM BULLETIN, 1997, 90 (1009): : 37 - 44
  • [6] OPTION PRICING - SIMPLIFIED APPROACH
    COX, JC
    ROSS, SA
    RUBINSTEIN, M
    [J]. JOURNAL OF FINANCIAL ECONOMICS, 1979, 7 (03) : 229 - 263
  • [7] The Adaptive Mesh Model: a new approach to efficient option pricing
    Figlewski, S
    Gao, B
    [J]. JOURNAL OF FINANCIAL ECONOMICS, 1999, 53 (03) : 313 - 351
  • [8] A NEW APPROACH FOR AMERICAN OPTION PRICING: THE DYNAMIC CHEBYSHEV METHOD
    Glau, Kathrin
    Mahlstedt, Mirco
    Poetz, Christian
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (01): : B153 - B180
  • [9] A New Stable Local Radial Basis Function Approach for Option Pricing
    Golbabai, A.
    Mohebianfar, E.
    [J]. COMPUTATIONAL ECONOMICS, 2017, 49 (02) : 271 - 288
  • [10] A New Stable Local Radial Basis Function Approach for Option Pricing
    A. Golbabai
    E. Mohebianfar
    [J]. Computational Economics, 2017, 49 : 271 - 288