Convergence and stochastic homogenization of a class of two components nonlinear reaction-diffusion systems

被引:0
|
作者
Hafsa, Omar Anza [1 ]
Mandallena, Jean Philippe [1 ]
Michaille, Gerard [1 ]
机构
[1] Univ Nimes, Lab MIPA, Site Carmes,Pl Gabriel Peri, F-30021 Nimes, France
关键词
Convergence of two components reaction-diffusion equations; stochastic homogenization; prey-predator models;
D O I
10.3233/ASY-201603
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish a convergence theorem for a class of two components nonlinear reaction-diffusion systems. Each diffusion term is the subdifferential of a convex functional of the calculus of variations whose class is equipped with the Moscoconvergence. The reaction terms are structured in such a way that the systems admit bounded solutions, which are positive in the modeling of ecosystems. As a consequence, under a stochastic homogenization framework, we prove two homogenization theorems for this class. We illustrate the results with the stochastic homogenization of a prey-predator model with saturation effect.
引用
收藏
页码:259 / 305
页数:47
相关论文
共 50 条
  • [1] Stability of a class of nonlinear reaction-diffusion equations and stochastic homogenization
    Hafsa, Omar Anza
    Mandallena, Jean Philippe
    Michaille, Gerard
    [J]. ASYMPTOTIC ANALYSIS, 2019, 115 (3-4) : 169 - 221
  • [2] TWO-SCALE HOMOGENIZATION OF NONLINEAR REACTION-DIFFUSION SYSTEMS WITH SLOW DIFFUSION
    Mielke, Alexander
    Reichelt, Sina
    Thomas, Marita
    [J]. NETWORKS AND HETEROGENEOUS MEDIA, 2014, 9 (02) : 353 - 382
  • [3] CONVERGENCE TO EQUILIBRIA FOR A CLASS OF REACTION-DIFFUSION SYSTEMS
    ENGLER, H
    HETZER, G
    [J]. OSAKA JOURNAL OF MATHEMATICS, 1992, 29 (03) : 471 - 481
  • [4] The convergence of a class of quasimonotone reaction-diffusion systems
    Wang, Y
    Jiang, JF
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2001, 64 : 395 - 408
  • [5] Stochastic Homogenization for Reaction-Diffusion Equations
    Lin, Jessica
    Zlatos, Andrej
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2019, 232 (02) : 813 - 871
  • [6] Stochastic homogenization for reaction-diffusion equations
    Lin, Jessica
    Zlatoš, Andrej
    [J]. arXiv, 2017,
  • [7] Convergence of a class of nonlinear time delays reaction-diffusion equations
    Hafsa, Omar Anza
    Mandallena, Jean Philippe
    Michaille, Gerard
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2020, 27 (02):
  • [8] Convergence of a class of nonlinear time delays reaction-diffusion equations
    Omar Anza Hafsa
    Jean Philippe Mandallena
    Gérard Michaille
    [J]. Nonlinear Differential Equations and Applications NoDEA, 2020, 27
  • [9] Global regularity and convergence to equilibrium of reaction-diffusion systems with nonlinear diffusion
    Fellner, Klemens
    Latos, Evangelos
    Bao Quoc Tang
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2020, 20 (03) : 957 - 1003
  • [10] Homogenization of a stochastic nonlinear reaction-diffusion equation with a large reaction term: The almost periodic framework
    Razafimandimby, Paul Andre
    Sango, Mamadou
    Woukeng, Jean Louis
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 394 (01) : 186 - 212