ON THE INITIAL-VALUE PROBLEM TO THE DEGASPERIS-PROCESI EQUATION WITH LINEAR DISPERSION

被引:2
|
作者
Guo, Fei [1 ]
Feng, Bao-Feng [2 ]
Gao, Hongjun [1 ]
Liu, Yue [3 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Nanjing 210046, Peoples R China
[2] Univ Texas Pan Amer, Dept Math, Edinburg, TX 78539 USA
[3] Univ Texas Arlington, Dept Math, Arlington, TX 76019 USA
关键词
Degasperis-Procesi equation; Local well-posedness; Blow-up; Breaking waves phenomena; Global existence; SHALLOW-WATER EQUATION; KORTEWEG-DE-VRIES; INTEGRABLE EQUATION; GLOBAL EXISTENCE; PEAKON SOLUTIONS; CAMASSA-HOLM; STABILITY; SOLITONS; WAVES; DYNAMICS;
D O I
10.3934/dcds.2010.26.1269
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the initial-value problem for the Degasperis-Procesi equation with a linear dispersion, which is an approximation to the incompressible Euler equation for shallow water waves. We establish local well-posedness and some global existence of solutions for certain initial profiles and determine the wave breaking phenomena for the equation. Finally, we verify the occurrence of the breaking waves by numerical simulations.
引用
收藏
页码:1269 / 1290
页数:22
相关论文
共 50 条