A new method of controlling active magnetic bearing through neural network

被引:0
|
作者
Achkar, Roger [1 ]
Nasr, Chaiban [2 ]
De Miras, Jerome [1 ]
Charara, Ali [1 ]
机构
[1] Univ Technol Compiegne, Heudiasyc Lab, CNRS, UMR 6599, BP 20529, F-60205 Compiegne, France
[2] Lebanese Univ, Fac Engn 1, Lebanon, NH USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The active magnetic bearing AMB presents a solution for all the technical problems since it ensures the total levitation of a body in space eliminating any mechanical contact between the rotor and the stator. The goal of our work is to show that the control of the AMB by Multilayer perceptrons MLP involves an improvement of the response compared to the ordering of the AMB by classical controllers. Our team has developed several diagrams with MLP to control the AMB. A final diagram was used and in which we optimized all the parameters influencing the training in order to obtain better results concerning the temporal answers of the positions of the axes.
引用
收藏
页码:1778 / +
页数:2
相关论文
共 50 条
  • [1] Neural network PID control scheme for the active magnetic bearing
    Shi, Yang
    Yan, Weisheng
    Ren, Zhang
    Xu, Demin
    Jixie Kexue Yu Jishu/Mechanical Science and Technology, 1998, 17 (02): : 337 - 338
  • [2] Sliding Mode Control with Neural Network for Active Magnetic Bearing System
    Cao, Zhi
    Dong, Jianning
    Wani, Faisal
    Polinder, Henk
    Bauer, Pavol
    Peng, Fei
    Huang, Yunkai
    45TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY (IECON 2019), 2019, : 744 - 749
  • [3] A Convolutional Neural Network for Electrical Fault Recognition in Active Magnetic Bearing Systems
    Donati, Giovanni
    Basso, Michele
    Manduzio, Graziano A.
    Mugnaini, Marco
    Pecorella, Tommaso
    Camerota, Chiara
    SENSORS, 2023, 23 (16)
  • [4] An Online Trained Adaptive Neural Network Controller for an Active Magnetic Bearing System
    Chen, Seng-Chi
    Van-Sum Nguyen
    Le, Dinh-Kha
    Nguyen Thi Hoai Nam
    2014 INTERNATIONAL SYMPOSIUM ON COMPUTER, CONSUMER AND CONTROL (IS3C 2014), 2014, : 741 - 744
  • [5] Neural network control of magnetic bearing
    Wang, JR
    Chen, BY
    Sun, ZG
    He, QX
    FIFTH INTERNATIONAL SYMPOSIUM ON INSTRUMENTATION AND CONTROL TECHNOLOGY, 2003, 5253 : 784 - 787
  • [6] A recurrent neural network-based rotor displacement estimation method for eight-pole active magnetic bearing
    Fan, Longyuan
    Liu, Zicheng
    Wang, Haijiao
    Jiang, Dong
    Chen, Yu
    IET ELECTRIC POWER APPLICATIONS, 2024,
  • [7] Active Magnetic Bearing Controller Design based on Radial Basis Function Neural Network
    Xu, Zixuan
    Xu, Hongze
    2022 IEEE 6TH ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC), 2022, : 804 - 808
  • [8] Neural network analysis of the magnetic bearing systems
    Fu Hongya
    Liu Pingfan
    Zhang Qingchun
    Li Guodong
    APPLIED MECHANICS AND MECHANICAL ENGINEERING, PTS 1-3, 2010, 29-32 : 190 - 196
  • [9] Controlling Journal Bearing Instability Using Active Magnetic Bearings
    El-Shafei, A.
    Dimitri, A. S.
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2010, 132 (01): : 1 - 9
  • [10] Controlling journal bearing instability using active magnetic bearings
    El-Shafei, A.
    Dimitri, A. S.
    PROCEEDINGS OF THE ASME TURBO EXPO 2007, VOL 5, 2007, : 983 - 993