EXPLAN: Explaining Black-box Classifiers using Adaptive Neighborhood Generation

被引:9
|
作者
Rasouli, Peyman [1 ]
Yu, Ingrid Chieh [1 ]
机构
[1] Univ Oslo, Dept Informat, Oslo, Norway
关键词
XAI; Interpretable Machine Learning; Perturbation-based Explanation Methods; Data Sampling; CLASSIFICATION;
D O I
10.1109/ijcnn48605.2020.9206710
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Defining a representative locality is an urgent challenge in perturbation-based explanation methods, which influences the fidelity and soundness of explanations. We address this issue by proposing a robust and intuitive approach for EXPLaining black-box classifiers using Adaptive Neighborhood generation (EXPLAN). EXPLAN is a module-based algorithm consisted of dense data generation, representative data selection, data balancing, and rule-based interpretable model. It takes into account the adjacency information derived from the black-box decision function and the structure of the data for creating a representative neighborhood for the instance being explained. As a local model-agnostic explanation method, EXPLAN generates explanations in the form of logical rules that are highly interpretable and well-suited for qualitative analysis of the model's behavior. We discuss fidelity-interpretability trade-offs and demonstrate the performance of the proposed algorithm by a comprehensive comparison with state-of-the-art explanation methods LIME, LORE, and Anchor. The conducted experiments on real-world data sets show our method achieves solid empirical results in terms of fidelity, precision, and stability of explanations.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Explaining black-box classifiers: Properties and functions
    Amgoud, Leila
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2023, 155 : 40 - 65
  • [2] Automated Image Reduction for Explaining Black-box Classifiers
    Jiang, Mingyue
    Tang, Chengjian
    Zhang, Xiao-Yi
    Zhao, Yangyang
    Ding, Zuohua
    2023 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE ANALYSIS, EVOLUTION AND REENGINEERING, SANER, 2023, : 367 - 378
  • [3] Exploiting auto-encoders for explaining black-box classifiers
    Guidotti, Riccardo
    INTELLIGENZA ARTIFICIALE, 2022, 16 (01) : 115 - 129
  • [4] DDImage: an image reduction based approach for automatically explaining black-box classifiers
    Jiang, Mingyue
    Tang, Chengjian
    Zhang, Xiao-Yi
    Zhao, Yangyang
    Ding, Zuohua
    EMPIRICAL SOFTWARE ENGINEERING, 2024, 29 (05)
  • [5] Explaining Black-Box Models Using Interpretable Surrogates
    Kuttichira, Deepthi Praveenlal
    Gupta, Sunil
    Li, Cheng
    Rana, Santu
    Venkatesh, Svetha
    PRICAI 2019: TRENDS IN ARTIFICIAL INTELLIGENCE, PT I, 2019, 11670 : 3 - 15
  • [6] Explaining Decisions of Black-Box Models Using BARBE
    Motallebi, Mohammad
    Anik, Md Tanvir Alam
    Zaiane, Osmar R.
    DATABASE AND EXPERT SYSTEMS APPLICATIONS, DEXA 2023, PT II, 2023, 14147 : 82 - 97
  • [7] Explaining Black-Box Algorithms Using Probabilistic Contrastive Counterfactuals
    Galhotra, Sainyam
    Pradhan, Romila
    Salimi, Babak
    SIGMOD '21: PROCEEDINGS OF THE 2021 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2021, : 577 - 590
  • [8] Active Bayesian Assessment of Black-Box Classifiers
    Ji, Disi
    Logan, Robert L.
    Smyth, Padhraic
    Steyvers, Mark
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 7935 - 7944
  • [9] Generative causal explanations of black-box classifiers
    O'Shaughnessy, Matthew
    Canal, Gregory
    Connor, Marissa
    Davenport, Mark
    Rozell, Christopher
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [10] Black-box Generation of Adversarial Text Sequences to Evade Deep Learning Classifiers
    Gao, Ji
    Lanchantin, Jack
    Soffa, Mary Lou
    Qi, Yanjun
    2018 IEEE SYMPOSIUM ON SECURITY AND PRIVACY WORKSHOPS (SPW 2018), 2018, : 50 - 56