Continuous matrix-product states in inhomogeneous systems with long-range interactions

被引:2
|
作者
Lukin, I., V [1 ]
Sotnikov, A. G. [1 ,2 ]
机构
[1] Kharkov Natl Univ, Svobody Sq 4, UA-61022 Kharkiv, Ukraine
[2] Akhiezer Inst Theoret Phys, NSC KIPT, Akad 1, UA-61108 Kharkiv, Ukraine
关键词
Quantum optics;
D O I
10.1103/PhysRevB.106.144206
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We develop the continuous matrix-product states approach for description of inhomogeneous one-dimensional quantum systems with long-range interactions. The method is applied to the exactly solvable Calogero-Moser model. We show the high accuracy of reproducing the ground-state properties of the many-body system and discuss potential errors that can originate from the approximation of the nonlocal interaction potentials with singularities.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Applying matrix product operators to model systems with long-range interactions
    Crosswhite, Gregory M.
    Doherty, A. C.
    Vidal, Guifre
    [J]. PHYSICAL REVIEW B, 2008, 78 (03)
  • [2] Matrix product states with long-range localizable entanglement
    Wahl, T. B.
    Perez-Garcia, D.
    Cirac, J. I.
    [J]. PHYSICAL REVIEW A, 2012, 86 (06):
  • [3] Thermodynamic limit and matrix-product states
    Rommer, S
    Östlund, S
    [J]. DENSITY-MATRIX RENORMALIZATION: A NEW NUMERICAL METHOD IN PHYSICS, 1999, 528 : 67 - 89
  • [4] Entanglement in Gaussian matrix-product states
    Adesso, Gerardo
    Ericsson, Marie
    [J]. PHYSICAL REVIEW A, 2006, 74 (03):
  • [5] Ergodicity breaking and quasistationary states in systems with long-range interactions
    Ribeiro-Teixeira, Ana C.
    Benetti, Fernanda P. C.
    Pakter, Renato
    Levin, Yan
    [J]. PHYSICAL REVIEW E, 2014, 89 (02):
  • [6] Stationary states and fractional dynamics in systems with long-range interactions
    Van Den Berg, T. L.
    Fanelli, D.
    Leoncini, X.
    [J]. EPL, 2010, 89 (05)
  • [7] Kinetic theory of inhomogeneous systems with long-range interactions and fluctuation–dissipation theorem
    Pierre-Henri Chavanis
    [J]. The European Physical Journal Plus, 139
  • [8] Matrix product state approach to a frustrated spin chain with long-range interactions
    Li, Zhi-Hua
    Wang, An-Min
    [J]. PHYSICAL REVIEW B, 2015, 91 (23):
  • [9] Infinite matrix product states for long-range SU(N) spin models
    Bondesan, Roberto
    Quella, Thomas
    [J]. NUCLEAR PHYSICS B, 2014, 886 : 483 - 523
  • [10] Error estimates for extrapolations with matrix-product states
    Hubig, C.
    Haegeman, J.
    Schollwoeck, U.
    [J]. PHYSICAL REVIEW B, 2018, 97 (04)