Robust Mobile Location Estimation in NLOS Environment Using GMM, IMM, and EKF

被引:35
|
作者
Cui, Wei [1 ]
Li, Bing [1 ,2 ]
Zhang, Le [3 ]
Meng, Wei [4 ]
机构
[1] Shandong Univ Sci & Technol, Coll Elect Engn & Automat, Qingdao 266590, Shandong, Peoples R China
[2] Univ New South Wales, Sch Comp Sci & Engn, Sydney, NSW 2052, Australia
[3] Univ Illinois, Adv Digital Sci Ctr, Singapore 138602, Singapore
[4] Guangdong Univ Technol, Guangzhou 510006, Guangdong, Peoples R China
来源
IEEE SYSTEMS JOURNAL | 2019年 / 13卷 / 03期
基金
中国国家自然科学基金;
关键词
Gaussian mixture model (GMM); indoor environment; interacting multiple model; mobile location estimator; non-line-of-sight (NLOS); WIRELESS LOCALIZATION; TERMINAL TRACKING; MITIGATION; TOA;
D O I
10.1109/JSYST.2018.2866592
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Indoor mobile localization in real-life scenarios often suffers from frequent transitions of sensor measurements between line-of-sight (LOS), non-line-of-sight (NLOS), and/or mixed LOS and NLOS conditions (LOS-NLOS). To address this, we propose GIMM-EKF by integrating Gaussian mixture model (GMM), interacting multiple model (IMM), and extended Kalman filter (EKF). In GIMM-EKF, GMM aims at modeling the distribution of a set of mixed LOS-NLOS range estimates. Then, a Kalman-based IMM framework is introduced with the estimated state probabilities from the GMM. Finally, an EKF is employed to estimate the target's location based on the resulting range estimates. The proposed GIMM-EKF works in a synergistic manner and outperforms several challenging baselines significantly. Experimental results demonstrate the feasibility of GIMM-EKF in mitigating the adverse impacts of severe NLOS errors and accurately estimating the mobile location in the LOS/NLOS/LOS-NLOS transition conditions.
引用
收藏
页码:3490 / 3500
页数:11
相关论文
共 50 条
  • [1] Mobile location estimation scheme in NLOS environment
    Cheng, Long
    Wu, Cheng-Dong
    Zhang, Yun-Zhou
    Chu, Hao
    IEICE ELECTRONICS EXPRESS, 2011, 8 (21): : 1829 - 1835
  • [2] Adaptive AR model based robust mobile location estimation approach in NLOS environment
    Zhen, J
    Zhang, SF
    VTC2004-SPRING: 2004 IEEE 59TH VEHICULAR TECHNOLOGY CONFERENCE, VOLS 1-5, PROCEEDINGS, 2004, : 2682 - 2685
  • [3] Robust speaker's location estimation in a vehicle environment using GMM models
    Liu, WH
    Cheng, CC
    Hu, JS
    2005 IEEE Intelligent Vehicles Symposium Proceedings, 2005, : 337 - 342
  • [4] Mobile Location Using Scatter Information in the NLOS Environment
    Wu, Baode
    Zhang, Hongyan
    Huang, Jiyan
    2016 6TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY FOR MANUFACTURING SYSTEMS (ITMS 2016), 2016, : 236 - 238
  • [5] Mobile Location Estimation in NLoS Environment Base on Interior Point Method
    Madiseh, Masoud Ghoreishi
    Shahzadi, Ali
    Shirazi, Ali Asghar Beheshti
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2007, 7 (02): : 205 - 214
  • [6] A Robust Mobile Location Estimator in NLOS Environments using Hybrid Filtering
    Gaspar, Alberto
    Grivet, Marco
    2006 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, VOLS 1-12, 2006, : 5704 - 5708
  • [7] Estimation of mobile terminal location in NLOS environments
    Tan, YB
    Liao, SJ
    Tan, XY
    Chen, DG
    ICEMI'2003: PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS, VOLS 1-3, 2003, : 688 - 691
  • [8] Mobile Location Estimation Using Fuzzy-Based IMM and Data Fusion
    Yang, Chang-Yi
    Chen, Bor-Sen
    Liao, Feng-Ko
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2010, 9 (10) : 1424 - 1436
  • [9] Robust speaker's location detection in a vehicle environment using GMM models
    Hu, Jwu-Sheng
    Cheng, Chieh-Cheng
    Liu, Wei-Han
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2006, 36 (02): : 403 - 412
  • [10] Robust mobile location estimator with NLOS mitigation using interacting multiple model algorithm
    Liao, Jung-Feng
    Chen, Bor-Sen
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2006, 5 (11) : 3002 - 3006